EMPLOYMENT FLUCTUATIONS, REAL ESTATE PRICES, AND PROPERTY TAXES

Jose Villegas

November 4, 2022

Macroeconomics, Policy Econometrics Seminar Ghent University $\cdot \,$ employment response \rightarrow decline real estate prices

residential

Commercial Real Estate (CRE)

- $\cdot \,$ employment response \rightarrow decline real estate prices
- $\cdot \downarrow$ real estate prices \Longrightarrow employment demand
 - Housing Wealth Channel
 - Firm Collateral Channel

- $\cdot \,$ employment response \rightarrow decline real estate prices
- $\cdot \downarrow$ real estate prices \Longrightarrow employment demand
 - Housing Wealth Channel

 $\begin{array}{ccc} \mbox{residential} & \mbox{residential} & \mbox{consumer} & \mbox{labor} \\ \mbox{prices} & \rightarrow & \mbox{collateral} & \rightarrow & \mbox{demand} \\ \end{array} \right. \label{eq:consumer}$

- $\cdot \,$ employment response \rightarrow decline real estate prices
- $\cdot \downarrow$ real estate prices \Longrightarrow employment demand
 - Firm Collateral Channel

$$\begin{array}{ccc} \mathsf{CRE} & \mathsf{Coporate} & \mathsf{Corporate} & \mathsf{labor} \\ \mathsf{prices} & \to & \mathsf{collateral} & \to & \mathsf{Borrowing} & \to & \mathsf{demand} \end{array}$$

- $\cdot \downarrow$ real estate prices \Longrightarrow employment demand
 - Housing Wealth Channel
 - Firm Collateral Channel
- · drop residential + CRE prices \Rightarrow decline in labor

Relative importance of Housing wealth & Firm collateral channel?

MOTIVATION

- $\cdot \downarrow$ real estate prices \Longrightarrow employment demand
 - Firm Collateral Channel
- · drop residential + CRE prices \Rightarrow decline in labor

Relative importance of Housing wealth & Firm collateral channel?

- Main issues
 - i. separate both channels
 - ii. tease out other mechanisms

· LITERATURE \implies measuring each channel on employment

Housing wealth

- Mian and Sufi(2014), Guren et al.(2021)

Firm collateral

- Adelino et al.(2015), Giroud and Mueller (2017), and Bahaj et al. (2022)

- $\cdot \, \, \text{LITERATURE} \Longrightarrow$ measuring each channel on employment
 - Housing wealth
 - Mian and Sufi(2014), Guren et al.(2021)
 - Firm collateral
 - Adelino et al.(2015), Giroud and Mueller (2017), and Bahaj et al. (2022)
- Unified framework to measure both channels
 - (1) Reduced form evidence \implies separate both channels
 - (2) Quantitative model \implies tease out other mechanisms

- Unified framework to measure both channels
 - (1) Reduced form evidence \implies separate both channels

'12 Italian property tax reform + DID empirical design

- estimate effect ↑ property taxes (residential vs CRE)
- (i) employment
- (ii) consumption expenditure
- (iii) residential prices
- (iv) CRE prices

- Unified framework to measure both channels
 - (2) Quantitative model \implies tease out other mechanisms

houses & CRE pay diff. property taxes + financial frictions

• Unified framework to measure both channels

(2) Quantitative model \implies tease out other mechanisms

houses & CRE pay diff. property taxes + financial frictions

 \implies linear decomposition of both channels

• Unified framework to measure both channels

- (2) Quantitative model \implies tease out other mechanisms
 - \Longrightarrow linear decomposition of both channels

housing wealth induced by \uparrow residential taxes

- Unified framework to measure both channels
 - (2) Quantitative model \implies tease out other mechanisms
 - \implies linear decomposition of both channels

firm collateral induced by \uparrow CRE taxes

• Unified framework to measure both channels

- (1) Reduced form evidence \implies separate both channels
- (2) Quantitative model \implies tease out other mechanisms

MAIN RESULT: both channels explain more than 80%

- \downarrow employment drop after \downarrow real estate prices
- \implies induced by \uparrow property taxes

- (1) MODEL
- (2) MAIN DECOMPOSITION RESULTS
- (3) EMPIRICAL STRATEGY & ESTIMATION RESULTS
- (4) HOUSING WEALTH AND FIRM COLLATERAL CHANNEL ON EMPLOYMENT
- (5) CONCLUSIONS & FUTURE WORK

EMPLOYMENT FLUCTUATIONS, REAL ESTATE PRICES, AND PROPERTY TAXES

QUANTITATIVE MODEL

MODEL SETUP

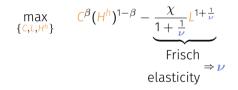
- \cdot closed economy, one period
- firms produce differentiated goods $\Longrightarrow j \in [0, 1]$
- two type of real estate properties
 - houses $H^h \Rightarrow$ households
 - CRE $H^f \Rightarrow$ firms
- \cdot real estate used as collateral
 - loans paid within period $\Rightarrow R = 0$
- \cdot dual property tax rate set by government
 - $\tau^h \Rightarrow \text{Houses}$
 - $\bullet \ \tau^f \Rightarrow {\rm CRE}$

HOUSEHOLDS

• first stage

- − house purchase \Rightarrow H^h
- non-housing expenditure \Rightarrow C
- labor supply \Rightarrow L

second stage


− expenditure on varieties \Rightarrow c_j for $j \in [0, 1]$

$$\max_{\{C,L,H^{h}\}} C^{\beta}(H^{h})^{1-\beta} - \frac{\chi}{1+\frac{1}{\nu}}L^{1+\frac{1}{\nu}}$$

• first stage \Rightarrow H^h , C, and L

 $\max_{\{C,L,H^h\}} \underbrace{C^{\beta}(H^h)^{1-\beta} - \frac{\chi}{1+\frac{1}{\nu}}L^{1+\frac{1}{\nu}}}_{\text{separable}} \Rightarrow \text{wealth effect } L^s \neq 0$

• first stage \Rightarrow H^h , C, and L

$$\max_{\{C,L,H^h\}} \underbrace{\frac{C^{\beta}(H^h)^{1-\beta}}{Cobb \text{ Douglass}}}_{\text{aggregator}} - \frac{\chi}{1+\frac{1}{\nu}} L^{1+\frac{1}{\nu}}$$

$$\max_{\{C,L,H^h\}} \quad \frac{C^{\beta}(H^h)^{1-\beta} - \frac{\chi}{1+\frac{1}{\nu}}L^{1+\frac{1}{\nu}}}{1+\frac{1}{\nu}}$$

subject to $C + P^h H^h \left(1+\tau^h\right) = WL + \Pi$

$$\max_{\substack{\{C,L,H^{h}\}\\ P_{C} = 1}} C^{\beta}(H^{h})^{1-\beta} - \frac{\chi}{1+\frac{1}{\nu}}L^{1+\frac{1}{\nu}}$$

subject to
$$\underbrace{C}_{P_{C} = 1} P^{h}H^{h}\left(1+\tau^{h}\right) = WL + \Pi$$

HOUSEHOLDS

$$\max_{\{C,L,H^{h}\}} C^{\beta}(H^{h})^{1-\beta} - \frac{\chi}{1+\frac{1}{\nu}}L^{1+\frac{1}{\nu}}$$

subject to
$$C + P^{h}H^{h}\left(1+\tau^{h}\right) = WL + \Pi$$

residential
property taxes \propto housing wealth

$$\max_{\{C,L,H^{h}\}} C^{\beta}(H^{h})^{1-\beta} - \frac{\chi}{1+\frac{1}{\nu}}L^{1+\frac{1}{\nu}}$$

subject to $C + P^{h}H^{h}\left(1+\tau^{h}\right) = \underbrace{WL}_{labor income}$

$$\max_{\{C,L,H^{h}\}} C^{\beta}(H^{h})^{1-\beta} - \frac{\chi}{1+\frac{1}{\nu}}L^{1+\frac{1}{\nu}}$$

subject to $C + P^{h}H^{h}\left(1+\tau^{h}\right) = WL + \prod_{\text{profits}}$

HOUSEHOLDS

$$\max_{\{C,L,H^{h}\}} C^{\beta}(H^{h})^{1-\beta} - \frac{\chi}{1+\frac{1}{\nu}}L^{1+\frac{1}{\nu}}$$

subject to $C + P^{h}H^{h}(1+\tau^{h}) = WL + \Pi$
$$\underbrace{C \le \phi_{h}P^{h}H^{h}}_{\text{borrowing}}$$

constraint

HOUSEHOLDS

$$\max_{\substack{\{C,L,H^h\}}} C^{\beta}(H^h)^{1-\beta} - \frac{\chi}{1+\frac{1}{\nu}}L^{1+\frac{1}{\nu}}$$

subject to $C + P^h H^h \left(1 + \tau^h\right) = WL + \Pi$
$$\underbrace{C \le \phi_h P^h H^h}_{\text{HH's collateral requirement}} \Rightarrow \phi_h$$

$$\max_{\substack{\{C,L,H^{h}\}}} C^{\beta} (H^{h})^{1-\beta} - \frac{\chi}{1+\frac{1}{\nu}} L^{1+\frac{1}{\nu}}$$

subject to $C + P^{h} H^{h} (1+\tau^{h}) = WL + \Pi$
 $C \le \phi_{h} P^{h} H^{h}$

• second stage $\Rightarrow c_j$ for $j \in [0, 1]$

$$\min_{\substack{(c_j)_{j\in[0,1]}}} \int_0^1 p_j c_j dj$$

HOUSEHOLDS

• second stage $\Rightarrow c_j$ for $j \in [0, 1]$

$$\min_{\substack{(c_j)_{j\in[0,1]}\\ \text{subject to}}} \int_{0}^{1} p_j c_j dj$$
$$\int_{0}^{1} c_j^{1-\frac{1}{\epsilon}} dj \int_{0}^{\frac{1}{1-\frac{1}{\epsilon}}}$$
$$\underbrace{CES aggregator}$$

HOUSEHOLDS

• second stage \Rightarrow c_i for $j \in [0, 1]$ $\min_{\substack{(c_j)_{j\in[0,1]}}} \int_0^j p_j c_j dj$ $C \ge \left(\int_{-\infty}^{1} c_j^{1-\frac{1}{\epsilon}} dj\right)^{\frac{1}{1-\frac{1}{\epsilon}}}$ subject to j's elasticity of demand $\Rightarrow \epsilon$ $p_j = \left(\frac{C}{C}\right)^{\frac{1}{\epsilon}}$

• second stage $\Rightarrow c_j$ for $j \in [0, 1]$

$$\min_{\substack{(c_j)_{j \in [0,1]}}} \int_0^1 p_j c_j dj$$

subject to $C \ge \left(\int_0^1 c_j^{1-\frac{1}{\epsilon}} dj\right)^{\frac{1}{1-\frac{1}{\epsilon}}}$

\cdot profit maximization

- invest in Commercial Real Estate (**CRE**) \Rightarrow H_i^f
- hire labor $\Rightarrow L_j$

$$\Pi_{j} = \max_{\{L_{j}, H_{j}^{f}\}} p_{j} c_{j}(L_{j}, H_{j}^{f}) - WL_{j} - P^{f}H_{j}^{f}\left(1 + \tau^{f}\right)$$

$$\Pi_{j} = \max_{\{L_{j}, H_{j}^{f}\}} \underbrace{p_{j} c_{j}(L_{j}, H_{j}^{f})}_{\text{operating revenues}} - WL_{j} - P^{f}H_{j}^{f}\left(1 + \tau^{f}\right)$$

$$\Pi_{j} = \max_{\{L_{j}, H_{j}^{f}\}} \underbrace{p_{j} c_{j}(L_{j}, H_{j}^{f})}_{\text{CRE technology}} - WL_{j} - P^{f}H_{j}^{f}\left(1 + \tau^{f}\right)$$

$$\Pi_{j} = \max_{\{L_{j}, H_{j}^{f}\}} p_{j} c_{j}(L_{j}, H_{j}^{f}) - \underbrace{WL_{j}}_{labor costs} - P^{f} H_{j}^{f} \left(1 + \tau^{f}\right)$$

$$\Pi_{j} = \max_{\{L_{j}, H_{j}^{f}\}} p_{j} c_{j}(L_{j}, H_{j}^{f}) - WL_{j} - \underbrace{P^{f} H_{j}^{f}}_{CRE \text{ investment}} (1 + \tau^{f})$$

$$\Pi_{j} = \max_{\{L_{j}, H_{j}^{i}\}} p_{j} c_{j}(L_{j}, H_{j}^{f}) - WL_{j} - \underbrace{P^{f} H_{j}^{f} \left(1 + \tau^{f}\right)}_{\text{CRE tangible taxes fixed assets}}$$

4/17

$$\Pi_{j} = \max_{\{L_{j}, H_{j}^{f}\}} p_{j} c_{j}(L_{j}, H_{j}^{f}) - WL_{j} - P^{f}H_{j}^{f}\left(1 + \tau^{f}\right)$$

subject to
$$p_{j} = \left[\frac{C}{c\left(L_{j}, H_{j}^{f}\right)}\right]^{\frac{1}{\epsilon}}$$

inverse demand

$$\Pi_{j} = \max_{\{L_{j}, H_{j}^{f}\}} \quad p_{j} c_{j}(L_{j}, H_{j}^{f}) - WL_{j} - P^{f}H_{j}^{f}\left(1 + \tau^{f}\right)$$
subject to
$$p_{j} = \left[\frac{C}{c\left(L_{j}, H_{j}^{f}\right)}\right]^{\frac{1}{e}}$$

$$\underbrace{WL_{j} \leq \phi_{f} P^{f}H_{j}^{f}}_{\text{collateral}}$$
constraint

$$\Pi_{j} = \max_{\{L_{j}, H_{j}^{f}\}} \quad p_{j} c_{j}(L_{j}, H_{j}^{f}) - WL_{j} - P^{f}H_{j}^{f}\left(1 + \tau^{f}\right)$$

subject to
$$p_{j} = \left[\frac{C}{c\left(L_{j}, H_{j}^{f}\right)}\right]^{\frac{1}{\epsilon}}$$
$$\underbrace{WL_{j}}_{\text{working}} \leq \phi_{f} P^{f}H_{j}^{f}$$
working
capital

$$\Pi_{j} = \max_{\{L_{j}, H_{j}^{f}\}} p_{j} c_{j}(L_{j}, H_{j}^{f}) - WL_{j} - P^{f}H_{j}^{f}(1 + \tau^{f})$$

subject to
$$p_{j} = \left[\frac{C}{c(L_{j}, H_{j}^{f})}\right]^{\frac{1}{e}}$$
$$WL_{j} \le \phi_{f} P^{f}H_{j}^{f}$$
collateral value

$$\Pi_{j} = \max_{\{L_{j}, H_{j}^{f}\}} p_{j} c_{j}(L_{j}, H_{j}^{f}) - WL_{j} - P^{f}H_{j}^{f}\left(1 + \tau^{f}\right)$$

subject to
$$p_{j} = \left[\frac{C}{c\left(L_{j}, H_{j}^{f}\right)}\right]^{\frac{1}{e}}$$
$$\underbrace{WL_{j} \leq \phi_{f} P^{f}H_{j}^{f}}_{\text{firm's coll.}}_{\text{requirement}} \Rightarrow \phi_{f}$$

$$\Pi_{j} = \max_{\{L_{j}, H_{j}^{f}\}} \quad p_{j} c_{j}(L_{j}, H_{j}^{f}) - WL_{j} - P^{f}H_{j}^{f}\left(1 + \tau^{f}\right)$$

subject to
$$p_{j} = \left[\frac{C}{c\left(L_{j}, H_{j}^{f}\right)}\right]^{\frac{1}{e}}$$
$$WL_{j} \le \phi_{f} P^{f}H_{j}^{f}$$

· construction sector represented by supply functions

 $H^{h}(P^{h}) = (P^{h})^{\sigma_{h}}$ $H^{f}(P^{f}) = (P^{f})^{\sigma_{f}}$

EMPLOYMENT FLUCTUATIONS, REAL ESTATE PRICES, AND PROPERTY TAXES

DECOMPOSING BOTH CHANNELS: PROPERTY TAX INCREASE

 \cdot model's constrained equilibrium

 $\Rightarrow \boldsymbol{\Theta} = \begin{bmatrix} \boldsymbol{\beta}, \boldsymbol{\nu}, \boldsymbol{\alpha}, \boldsymbol{\epsilon}, \phi_h, \phi_f, \sigma_h, \sigma_f \end{bmatrix}$

allocations
$$\rightarrow L\left(\Theta, \tau^{h}, \tau^{f}\right) C\left(\Theta, \tau^{h}, \tau^{f}\right)$$

prices $\rightarrow P^{h}\left(\Theta, \tau^{h}, \tau^{f}\right) P^{f}\left(\Theta, \tau^{h}, \tau^{f}\right)$

model's constrained equilibrium

$$\Rightarrow \Theta = \left[\beta, \nu, \alpha, \epsilon, \phi_h, \phi_f, \sigma_h, \sigma_f\right]$$
allocations $\rightarrow L\left(\Theta, \tau^h, \tau^f\right) C\left(\Theta, \tau^h, \tau^f\right)$
prices $\rightarrow P^h\left(\Theta, \tau^h, \tau^f\right) P^f\left(\Theta, \tau^h, \tau^f\right)$

closed-form solution
$$pprox$$
 log-linear in au^h & au^f

 \cdot model's constrained equilibrium

$$\Rightarrow \Theta = \left[\beta, \nu, \alpha, \epsilon, \phi_h, \phi_f, \sigma_h, \sigma_f\right]$$
allocations $\rightarrow L\left(\Theta, \tau^h, \tau^f\right) C\left(\Theta, \tau^h, \tau^f\right)$
closed-form solution
prices $\rightarrow P^h\left(\Theta, \tau^h, \tau^f\right) P^f\left(\Theta, \tau^h, \tau^f\right)$
 $\approx \text{log-linear in } \tau^h \&$

 \cdot effect of an increase in property taxes

 $\cdot\,$ model's constrained equilibrium

$$\Rightarrow \Theta = \left[\beta, \nu, \alpha, \epsilon, \phi_h, \phi_f, \sigma_h, \sigma_f\right]$$
allocations $\rightarrow L\left(\Theta, \tau^h, \tau^f\right) C\left(\Theta, \tau^h, \tau^f\right)$
prices $\rightarrow P^h\left(\Theta, \tau^h, \tau^f\right) P^f\left(\Theta, \tau^h, \tau^f\right)$

closed-form solution \approx log-linear in τ^h & τ^f

• effect of an increase in property taxes

 \implies compare equilibrium for high/low tax regimes

 \cdot high/low tax regimes

$$(\tau_1^h, \tau_1^f)$$
 & $(\tau_0^h, \tau_0^f) \Longrightarrow \tau_1^i > \tau_0^i, i = \{h, f\}$

equilibrium definition binding borrowing constraints log-lin solution

high/low tax regimes

$$(\tau_1^h, \tau_1^f)$$
 & $(\tau_0^h, \tau_0^f) \Longrightarrow \tau_1^i > \tau_0^i, i = \{h, f\}$

• equilibrium $Y = \{L, C, P^h, P^f\} \Longrightarrow log-lin$

$$\begin{cases} \mathsf{Y}_1(\Theta, \tau_1^h, \tau_1^f) \\ \\ \mathsf{Y}_0(\Theta, \tau_0^h, \tau_0^f) \end{cases} \Longrightarrow y = \log(\mathsf{Y}_1) - \log(\mathsf{Y}_0) \end{cases}$$

equilibrium definition binding borrowing constraints log-lin solution

high/low tax regimes

$$(\tau_1^h, \tau_1^f)$$
 & $(\tau_0^h, \tau_0^f) \Longrightarrow \tau_1^i > \tau_0^i, i = \{h, f\}$

• equilibrium employment $L \Longrightarrow log-lin$

$$\begin{cases} \mathsf{L}_{1}(\Theta, \boldsymbol{\tau}_{1}^{h}, \boldsymbol{\tau}_{1}^{f}) \\ \\ \mathsf{L}_{0}(\Theta, \boldsymbol{\tau}_{0}^{h}, \boldsymbol{\tau}_{0}^{f}) \end{cases} \Longrightarrow l = \log(\mathsf{L}_{1}) - \log(\mathsf{L}_{0}) \end{cases}$$

high/low tax regimes

$$(\tau_1^h, \tau_1^f)$$
 & $(\tau_0^h, \tau_0^f) \Longrightarrow \tau_1^i > \tau_0^i, i = \{h, f\}$

• equilibrium employment L is log-lin $\implies \log(L_1) - \log(L_0)$

$$l = \beta_{l,h}(\Theta) \Delta \tau^{h} + \beta_{l,f}(\Theta) \Delta \tau^{f}$$
$$\Delta \tau^{i} = \tau_{1}^{i} - \tau_{0}^{f}$$

high/low tax regimes

$$(\tau_1^h, \tau_1^f)$$
 & $(\tau_0^h, \tau_0^f) \Longrightarrow \tau_1^i > \tau_0^i, i = \{h, f\}$

 \cdot equilibrium employment *L* is log-lin \Longrightarrow

$$l = \beta_{l,h}(\Theta) \Delta \tau^h + \beta_{l,f}(\Theta) \Delta \tau^f$$

$$\begin{array}{c} \text{model's} \\ \text{reduced form} \\ \text{effect} \end{array} \Longrightarrow \begin{cases} \beta_{l,h}(\Theta) = \frac{\partial l}{\partial \Delta \tau_h} \\ \\ \beta_{l,f}(\Theta) = \frac{\partial l}{\partial \Delta \tau_f} \end{cases}$$

equilibrium definition binding borrowing constraints log-lin solution equilib. response coeff. Δau_h coeff. Δau_f

high/low tax regimes

$$(\tau_1^h, \tau_1^f)$$
 & $(\tau_0^h, \tau_0^f) \Longrightarrow \tau_1^i > \tau_0^i, i = \{h, f\}$

• complete equilibrium
$$\implies$$
 Y = {L, C, P^h, P^f}

$$l = \beta_{l,h}(\Theta) \Delta \tau^{h} + \beta_{l,f}(\Theta) \Delta \tau^{f}$$

$$c = \beta_{c,h}(\Theta) \Delta \tau^{h} + \beta_{c,f}(\Theta) \Delta \tau^{f}$$

$$p^{h} = \beta_{p^{h},h}(\Theta) \Delta \tau^{h} + \beta_{p^{h},f}(\Theta) \Delta \tau^{f}$$

$$p^{f} = \beta_{p^{f},h}(\Theta) \Delta \tau^{h} + \beta_{p^{f},f}(\Theta) \Delta \tau^{f}$$

+ equilibrium response for employment $\Longrightarrow \Delta au^f > 0$ & $\Delta au^h = 0$

$$l = \beta_{l,f}(\Theta) \Delta \tau^{f}$$

FIRM COLLATERAL CHANNEL ON EMPLOYMENT

• equilibrium response for employment $\Longrightarrow \Delta au^f > 0$

$$l = \beta_{l,f}(\Theta) \Delta \tau^{f}$$

• $\beta_{l,f}(\Theta)$ capture firm collateral channel

$$\beta_{l,f}(\Theta) = \delta^{\text{coll}}(\Theta) + \delta_f^{W}(\Theta) + \delta_f^{p^h}(\Theta)$$

FIRM COLLATERAL CHANNEL ON EMPLOYMENT

+ equilibrium response for employment $\Longrightarrow \Delta au^f > 0$

$$\beta_{l,f}(\Theta) = \underbrace{\delta_{f}^{\text{coll}}(\Theta)}_{\text{firm collateral channel}} + \delta_{f}^{\text{W}}(\Theta) + \delta_{f}^{p^{h}}(\Theta)$$

for
$$w = p^h = 0$$

$$\delta^{coll} = \frac{\partial l^d}{\partial p^f} \frac{\partial p^f}{\partial \Delta \tau^f}$$

Firm Collateral: Intuition

+ equilibrium response for employment $\Longrightarrow \Delta au^f > 0$

$$\beta_{l,f}(\Theta) = \delta^{\text{coll}}(\Theta) + \underbrace{\delta_f^{W}(\Theta) + \delta_f^{p^h}(\Theta)}_{\text{GE}}$$

GE adjustment \Longrightarrow response $\{P^h, W\}$ to $\Delta \tau^f > 0$

GE Adjustment: Intuition

FIRM COLLATERAL CHANNEL ON EMPLOYMENT

+ equilibrium response for employment $\Longrightarrow \Delta au^f > 0$

$$\beta_{l,f}(\Theta) = \delta^{\operatorname{coll}}(\Theta) + \delta_f^{W}(\Theta) + \delta_f^{p^h}(\Theta)$$

• closed form expression for $\delta^{\text{coll}}(\Theta)$

$$\delta^{\text{coll}}(\Theta) = -\left(\frac{\epsilon}{1+\phi_f}\right) \left(\frac{1+\sigma_f}{1+\sigma_f+(1-\alpha)(\epsilon-1)}\right)$$

· defined by $\Longrightarrow \sigma_f$ and ϕ_f

- equilibrium response for employment $\Longrightarrow \Delta au^h > 0$ & $\Delta au^f = 0$

$$l = \beta_{l,h}(\Theta) \, \Delta \tau^h$$

HOUSING WEALTH CHANNEL ON EMPLOYMENT

• equilibrium response for employment $\Longrightarrow \Delta au^f > 0$

$$l = eta_{l,h}(\Theta) \, \Delta au^h$$

• $\beta_{l,h}(\Theta)$ capture housing wealth channel

$$\beta_{l,h}(\Theta) = \delta^{\text{wealth}}(\Theta) + \delta_h^{W}(\Theta) + \delta_h^{p^{l}}(\Theta)$$

HOUSING WEALTH CHANNEL ON EMPLOYMENT

 \cdot equilibrium response for employment $\Longrightarrow \Delta au^h > 0$

$$\beta_{l,h}(\Theta) = \underbrace{\delta_{housing wealth}^{wealth}(\Theta)}_{\text{housing wealth}} + \delta_h^w(\Theta) + \delta_h^{p^f}(\Theta)$$

for
$$\mathbf{w} = \mathbf{p}^f = \mathbf{0}$$

$$\delta^{\text{wealth}} = \frac{\partial l}{\partial \Delta \tau^h} = \frac{\partial l^d}{\partial c} \frac{\partial c}{\partial p^h} \frac{\partial p^h}{\partial \Delta \tau^h}$$

· equilibrium response for employment $\Longrightarrow \Delta au^h > 0$

$$\beta_{l,h}(\Theta) = \delta^{\text{wealth}}(\Theta) + \underbrace{\delta_h^{W}(\Theta) + \delta_h^{p^f}(\Theta)}_{\text{GE}}$$

GE adjustment \Longrightarrow response $\{P^f, W\}$ to $\Delta \tau^h > 0$

HOUSING WEALTH CHANNEL ON EMPLOYMENT

 \cdot equilibrium response for employment $\Longrightarrow \Delta au^h > 0$

$$\beta_{l,h}(\Theta) = \delta^{\text{wealth}}(\Theta) + \delta_h^{W}(\Theta) + \delta_h^{p^{f}}(\Theta)$$

• closed form expression for $\delta^{\text{wealth}}(\Theta)$

$$\delta^{\text{wealth}}(\Theta) = -\left(\frac{1+\nu}{1+\phi_h}\right) \left(\frac{1+\sigma_h}{1+\sigma_h+(1-\beta)\nu}\right)$$

· depends $\implies \sigma_h$ and ϕ_h

• equilibrium response for employment

$$l = \beta_{l,h}(\Theta) \Delta \tau^{h} + \beta_{l,f}(\Theta) \Delta \tau^{f}$$
$$\beta_{l,h}(\Theta) = \delta^{\text{wealth}}(\Theta) + \delta_{h}^{w}(\Theta) + \delta_{h}^{p^{f}}(\Theta)$$
$$\beta_{l,f}(\Theta) = \delta^{\text{coll}}(\Theta) + \delta_{f}^{w}(\Theta) + \delta_{f}^{p^{h}}(\Theta)$$

NEXT STEP

• equilibrium response for employment

$$l = \beta_{l,h}(\Theta) \Delta \tau^{h} + \beta_{l,f}(\Theta) \Delta \tau^{f}$$
$$\beta_{l,h}(\Theta) = \delta^{\text{wealth}}(\Theta) + \delta_{h}^{w}(\Theta) + \delta_{h}^{p^{f}}(\Theta)$$
$$\beta_{l,f}(\Theta) = \delta^{\text{coll}}(\Theta) + \delta_{f}^{w}(\Theta) + \delta_{f}^{p^{h}}(\Theta)$$

- discipline the model $[\sigma_h, \phi_h, \sigma_f, \phi_f] \Longrightarrow$ empirical estimates $\left\{ \hat{\beta}_{y,h}, \hat{\beta}_{y,f} \right\}$
 - employment
 - consumption expenditure
 - Residential and CRE prices

NEXT STEP

• equilibrium response for employment

$$l = \beta_{l,h}(\Theta) \Delta \tau^{h} + \beta_{l,f}(\Theta) \Delta \tau^{h}$$
$$\beta_{l,h}(\Theta) = \delta^{\text{wealth}}(\Theta) + \delta^{w}_{h}(\Theta) + \delta^{p^{f}}_{h}(\Theta)$$
$$\beta_{l,f}(\Theta) = \delta^{\text{coll}}(\Theta) + \delta^{w}_{f}(\Theta) + \delta^{p^{h}}_{f}(\Theta)$$

- empirical estimates $\left\{\hat{\beta}_{y,h},\hat{\beta}_{y,f}\right\}$
 - employment
 - consumption expenditure
 - Residential and CRE prices
- \cdot Empirical analysis \Longrightarrow '12 Italian property tax reform + DID

EMPLOYMENT FLUCTUATIONS, REAL ESTATE PRICES, AND PROPERTY TAXES

EMPIRICAL ANALYSIS: THE ITALIAN TAX REFORM

- (1) Dual tax rate \implies house-owners **vs** CRE-owners
- (2) Property taxes defined independently by municipalities each year
- (3) '12 Property Tax Reform \implies force municipalities \uparrow property taxes

(1) Dual tax rate \implies house-owners **vs** CRE-owners

• principal $\Longrightarrow \tau^{\mathsf{h}}$

house-owners \Rightarrow if used as main residence

• secondary $\Longrightarrow \tau^{\mathrm{f}}$

other properties \Rightarrow firms that own CRE

- (1) Dual tax rate \implies house-owners **vs** CRE-owners
- (2) Property taxes defined independently by municipalities each year
 - $\Longrightarrow \uparrow \text{ or } \downarrow \left\{ \tau^h, \tau^f \right\} \in [\overline{\tau}, \underline{\tau}]$

- (1) Dual tax rate \implies house-owners **vs** CRE-owners
- (2) Property taxes defined independently by municipalities each year
- (3) '12 Property Tax Reform \implies force municipalities \uparrow property taxes
 - higher au^h & au^f Details
 - variation across municipalities (Details)

EMPLOYMENT FLUCTUATIONS, REAL ESTATE PRICES, AND PROPERTY TAXES

EMPIRICAL ANALYSIS: DATA

- Municipal level data
 - Balance panel
 - 6,220 municipalities
 - Period 2008-2014

- \cdot Variables of interest
 - 1. Property tax rate (τ^h, τ^f)
 - 2. Employment (L)
 - 3. Consumption Expenditure (C)
 - 4. Real Estate Prices (P^h, P^f)

- Variables of interest
 - 1. Property tax rate (τ^h, τ^f)
 - From official acts issued each year by municipalities
 - 2. Employment (L)
 - 3. Consumption Expenditure (C)
 - 4. Real Estate Prices (P^h, P^f)

- \cdot Variables of interest
 - 1. Property tax rate (τ^h, τ^f)
 - 2. Employment (L)
 - yearly census on establishments
 - employees working in establishments located in municipality
 - focus \implies Non-Tradable sector
 - $\bullet \ \text{exclude} \Longrightarrow \text{Construction sector}$
 - 3. Consumption Expenditure (C)
 - 4. Real Estate Prices (P^h, P^f)

- \cdot Variables of interest
 - 1. Property tax rate (τ^h, τ^f)
 - 2. Employment (L)
 - 3. Consumption Expenditure (C)
 - proxy \implies new vehicles household expenditure
 - 4. Real Estate Prices (P^h, P^f)

- \cdot Variables of interest
 - 1. Property tax rate (τ^h, τ^f)
 - 2. Employment (L)
 - 3. Consumption Expenditure (C)
 - 4. Real Estate Prices (P^h, P^f)
 - Houses \Rightarrow residential properties
 - Commercial real estate \Rightarrow retail stores properties

EMPLOYMENT FLUCTUATIONS, REAL ESTATE PRICES, AND PROPERTY TAXES

EMPIRICAL ANALYSIS: ESTIMATION STRATEGY

SPECIFICATION: TWO-WAY FIXED EFFECT MODEL

• **NOTATION**: *m*, *t* = municipality, year

-
$$Y_{m,t}$$
: outcome variable $\Rightarrow Y = \left\{L, C, P^h, P^f\right\}$

$$- y_{m,t} = \frac{Y_{m,t} - Y_{m,t-1}}{(Y_{m,t} + Y_{m,t-1})/2} \Rightarrow y = \{l, c, p^h, p^f\}$$

$$- \Delta \tau^{i}_{m,t} = \tau^{i}_{m,t} - \tau^{i}_{m,t-1}$$
 for $i = \{h, f\}$

- \star Secondary tax rate: au^f

SPECIFICATION: TWO-WAY FIXED EFFECT MODEL

· Baseline specification \Rightarrow DID

$$y_{m,t} = \mathsf{FE}_m + \mathsf{FE}_t + \beta_{y,h} \ \Delta \tau^h_{m,t} \times 1\{t = 2012\} + \beta_{y,f} \ \Delta \tau^f_{m,t} \times 1\{t = 2012\} + \epsilon_{m,t}$$

- FE_m: Municipality FE
- FE_t: Year FE
- $\epsilon_{m,t} \Longrightarrow$ unobserved trend components

Covariance matrix $\epsilon_{m,t}$

 \Longrightarrow clustered across municipalities within same local labor market

SPECIFICATION: TWO-WAY FIXED EFFECT MODEL

· Baseline specification \Rightarrow DID

 $y_{m,t} = \mathsf{FE}_m + \mathsf{FE}_t + \beta_{\mathbf{y},\mathbf{h}} \,\Delta\tau_{m,t}^{\mathbf{h}} \times 1\{t = 2012\} + \beta_{\mathbf{y},f} \,\Delta\tau_{m,t}^{f} \times 1\{t = 2012\} + \epsilon_{m,t}$

• coefficients of interest $\Rightarrow \beta_{y,h} \& \beta_{y,f}$

 $-\Delta \tau^{i}_{m,t} \times 1_{t=2012} = \text{treatment intensity} \times \text{post-tax reform}$

• Interpreting $\beta_{y,i}$

- 1 pp. $\Delta \tau^i$ higher \Longrightarrow change y by $\beta_{y,i}$ pp.

EMPLOYMENT FLUCTUATIONS, REAL ESTATE PRICES, AND PROPERTY TAXES

EMPIRICAL ANALYSIS: RESULTS

Non-Tradable	Consumption	Housing	Commercial RE
Employment	Expenditure	Price	Price
 $\widehat{eta}_{l,i}$	$\widehat{eta}_{c,i}$	$\widehat{eta}_{p^h,i}$	$\widehat{eta}_{p^f,i}$

 $\Delta \tau_{m,t}^h \times 1\{t = 2012\}$

 $\Delta \tau_{m,t}^f \times 1 \{t = 2012\}$

Ν	mun
R	2

$$\cdot \uparrow \tau^h, \tau^f \Longrightarrow \downarrow l^{nt}$$

	Non-Tradable Employment $\widehat{oldsymbol{eta}}_{l,i}$	Consumption Expenditure $\widehat{eta}_{c,i}$	Housing Price $\widehat{eta}_{p^h,i}$	Commercial RE Price $\widehat{\beta}_{p^{f},i}$
$\Delta \tau^h_{m,t} \times 1\{t = 2012\}$	-0.087***			
,	(0.015)			
$\Delta au_{m,t}^f$ $ imes$ 1 { $t=$ 2012}	-0.045***			
	(0.011)			
N _{mun}	6.220			
	0.13			

$$\cdot \uparrow \tau^h \Longrightarrow \downarrow \mathsf{C}$$

	Non-Tradable Employment $\widehat{eta}_{l,i}$	Consumption Expenditure $\widehat{oldsymbol{eta}}_{c,i}$	Housing Price $\widehat{eta}_{p^h,i}$	Commercial RE Price $\widehat{\beta}_{p^{\rm f},i}$
$\Delta \tau^h_{m,t} \times 1 \{t = 2012\}$	-0.087***	-0.517***		
,	(0.015)	(0.145)		
$\Delta au_{m,t}^f imes$ 1 { $t =$ 2012}	-0.045***	-0.177		
,	(0.011)	(0.120)		
N _{mun}	6.220	6.104		
R ²	0.13	0.12		

$$\cdot \uparrow \tau^h$$
, $\tau^f \Longrightarrow \downarrow p^h$

	Non-Tradable Employment $\widehat{eta}_{l,i}$	Consumption Expenditure $\widehat{\beta}_{c,i}$	Housing Price $\widehat{\boldsymbol{\beta}}_{\boldsymbol{p}^h,i}$	Commercial RE Price $\widehat{\beta}_{p^{f},i}$
• h • • (· • • • • • • • • • • • • • • • •	,			^p p ^r ,i
$\Delta \tau^h_{m,t} \times 1\left\{t = 2012\right\}$	-0.087*** (0.015)	-0.517*** (0.145)	-0.022** (0.009)	
$\Delta \tau_{m,t}^f \times 1\left\{t = 2012\right\}$	-0.045*** (0.011)	-0.177 (0.120)	-0.017*** (0.006)	
N _{mun}	6.220	6.104	5.534	
R ²	0.13	0.12	0.33	

$$\boldsymbol{\cdot} \ \uparrow \tau^f \Longrightarrow \downarrow p^f$$

	Non-Tradable Employment $\widehat{eta}_{l,i}$	Consumption Expenditure $\widehat{eta}_{c,i}$	Housing Price $\widehat{eta}_{p^h,i}$	Commercial RE Price $\widehat{m{eta}}_{p^f,i}$
$\Delta \tau^h_{m,t} \times 1 \{t = 2012\}$	-0.087***	-0.517***	-0.022**	-0.005
,	(0.015)	(0.145)	(0.009)	(0.010)
$\Delta au_{m,t}^f imes$ 1 { $t = 2012$ }	-0.045***	-0.177	-0.017***	-0.032***
,	(0.011)	(0.120)	(0.006)	(0.008)
N _{mun}	6.220	6.104	5.534	3.687
R ²	0.13	0.12	0.33	0.31

	Non-Tradable	Consumption	Housing	Commercial RE
	Employment	Expenditure	Price	Price
	$\widehat{eta}_{l,i}$	$\widehat{eta}_{c,i}$	$\widehat{eta}_{p^h,i}$	$\widehat{eta}_{p^f,i}$
$\Delta \tau^h_{m,t} \times 1\left\{t = 2012\right\}$	-0.087***	-0.517***	-0.022**	-0.005
	(0.015)	(0.145)	(0.009)	(0.010)
$\Delta au_{m,t}^f imes$ 1 { $t = 2012$ }	-0.045***	-0.177	-0.017***	-0.032***
,.	(0.011)	(0.120)	(0.006)	(0.008)
N _{mun}	6.220	6.104	5.534	3.687
R ²	0.13	0.12	0.33	0.31

- \cdot baseline results
 - \implies credible identification
 - \implies robust

- \cdot baseline results
 - \implies credible identification
 - systematic pre-tax reform trend differences
 - \implies event study approach $\stackrel{\text{implementation}}{\longrightarrow}$

- baseline results
 - \implies credible identification
 - balancing across municipalities with different treatment intensities (implementation)

- eco & fin conditions results
- migration patterns employment shares results
- local governments finances results

 \cdot baseline results

- adding regressors (implementation)

 \cdot baseline results

- spillover effects (implementation)

- \cdot baseline results
 - ⇒ robust results
 - alternative hypothesis

- \cdot baseline results
 - \implies credible identification
 - \implies robust

EMPLOYMENT FLUCTUATIONS, REAL ESTATE PRICES, AND PROPERTY TAXES

CALIBRATION

CALIBRATION PROCEDURE

 $\cdot \,\, \text{recall} \Longrightarrow \text{main decomposition result}$

$$\beta_{l,h}(\Theta) = \delta^{\text{wealth}}(\Theta) + \delta_h^{W}(\Theta) + \delta_h^{p^{f}}(\Theta)$$
$$\beta_{l,f}(\Theta) = \delta^{\text{coll}}(\Theta) + \delta_f^{W}(\Theta) + \delta_f^{p^{h}}(\Theta)$$

$$\delta^{\text{wealth}}(\Theta) = -\left(\frac{1+\nu}{1+\phi_h}\right) \left(\frac{1+\sigma_h}{1+\sigma_h+(1-\beta)\nu}\right)$$
$$\delta^{\text{coll}}(\Theta) = -\left(\frac{\epsilon}{1+\phi_f}\right) \left(\frac{1+\sigma_f}{1+\sigma_f+(1-\alpha)(\epsilon-1)}\right)$$

CALIBRATION PROCEDURE

· defined externally $\Longrightarrow \Theta_{\text{out}} = [\alpha, \epsilon, \nu, \beta]$

$$\delta^{\text{wealth}}(\Theta) = -\left(\frac{1+\nu}{1+\phi_h}\right) \left(\frac{1+\sigma_h}{1+\sigma_h+(1-\beta)\nu}\right)$$
$$\delta^{\text{coll}}(\Theta) = -\left(\frac{\epsilon}{1+\phi_f}\right) \left(\frac{1+\sigma_f}{1+\sigma_f+(1-\alpha)(\epsilon-1)}\right)$$

CALIBRATION PROCEDURE

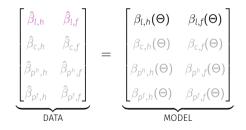
• defined externally $\Longrightarrow \Theta_{\text{out}} = [\alpha, \epsilon, \nu, \beta]$

	Parameter	Value	Target
Labor Share	α	0.6	Common in literature
Frisch elasticity	u	1	Common in literature
Elasticity of demand	ϵ	4	Common in literature
Exp. share goods	eta	0.8	Berger et al.(2018)

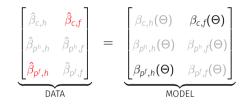
• internal calibration $\Longrightarrow \Theta_{in} = \begin{bmatrix} \sigma_h, \sigma_f, \phi_h, \phi_f \end{bmatrix}$

$$\delta^{\text{wealth}}(\Theta) = -\left(\frac{1+\nu}{1+\phi_h}\right) \left(\frac{1+\sigma_h}{1+\sigma_h+(1-\beta)\nu}\right)$$
$$\delta^{\text{coll}}(\Theta) = -\left(\frac{\epsilon}{1+\phi_f}\right) \left(\frac{1+\sigma_f}{1+\sigma_f+(1-\alpha)(\epsilon-1)}\right)$$

CALIBRATION PROCEDURE


• calibrate
$$\Theta_{in} = [\sigma_h, \sigma_f, \phi_h, \phi_f] \Longrightarrow \left\{ \hat{\beta}_{y,h}, \, \hat{\beta}_{y,f} \right\}$$

$$\underbrace{\begin{bmatrix} \hat{\beta}_{l,h} & \hat{\beta}_{l,f} \\ \hat{\beta}_{c,h} & \hat{\beta}_{c,f} \\ \hat{\beta}_{p^{h},h} & \hat{\beta}_{p^{h},f} \\ \hat{\beta}_{p^{f},h} & \hat{\beta}_{p^{f},f} \end{bmatrix}}_{\text{DATA}} = \underbrace{\begin{bmatrix} \beta_{l,h}(\Theta) & \beta_{l,f}(\Theta) \\ \beta_{c,h}(\Theta) & \beta_{c,f}(\Theta) \\ \beta_{p^{h},h}(\Theta) & \beta_{p^{h},f}(\Theta) \\ \beta_{p^{f},h}(\Theta) & \beta_{p^{f},f}(\Theta) \end{bmatrix}}_{\text{MODEL}}$$


CALIBRATION PROCEDURE

- Won't target $\hat{\beta}_{l,h}$, $\hat{\beta}_{l,f} \Longrightarrow$ Model validation test

Compare $\beta_{l,h}(\Theta)$, $\beta_{l,f}(\Theta)$ to $\hat{\beta}_{l,h}$, $\hat{\beta}_{l,f}$

• Exclude $\hat{\beta}_{c,f}$, $\hat{\beta}_{p^f,h} \Longrightarrow$ Non-statistically significant

Baseline Results

CALIBRATION PROCEDURE

- Target moments
 - $\Longrightarrow \hat{\beta}_{c,h}, \hat{\beta}_{p^h,h}, \hat{\beta}_{p^h,f}, \hat{\beta}_{p^f,f}$

$$\underbrace{\begin{bmatrix} \hat{\beta}_{c,h} & \hat{\beta}_{c,f} \\ \hat{\beta}_{p^{h},h} & \hat{\beta}_{p^{h},f} \\ \hat{\beta}_{p^{f},h} & \hat{\beta}_{p^{f},f} \end{bmatrix}}_{\text{DATA}} = \underbrace{\begin{bmatrix} \beta_{c,h}(\Theta_{out},\phi_{h}) & \beta_{c,f}(\Theta) \\ \beta_{c,h}(\Theta_{out},\sigma_{h}) & \beta_{p^{h},f}(\Theta_{out},\phi_{f}) \\ \beta_{p^{f},h}(\Theta) & \beta_{p^{f},f}(\Theta_{out},\sigma_{f}) \end{bmatrix}}_{\text{MODEL}}$$

$$\phi_h \to \beta_{c,h}(\Theta) = \hat{\beta}_{c,h} \text{ and } \phi_f \to \beta_{p^h,f}(\Theta) = \hat{\beta}_{p^h,f}$$

 $\sigma_h \to \beta_{p^h,h}(\Theta) = \hat{\beta}_{p^h,h} \text{ and } \sigma_f \to \beta_{p^f,f}(\Theta) = \hat{\beta}_{p^f,f}$

Baseline Results

CALIBRATION PROCEDURE

calibrate
$$\Theta_{in} = [\sigma_h, \sigma_f, \phi_h, \phi_f] \Longrightarrow \left\{ \hat{\beta}_{y,h}, \hat{\beta}_{y,f} \right\}$$

	Parameter	Value	Target
Supply elast. houses	σ_h	4.87	$\hat{eta}_{P^h,h}$
Supply elast. CRE	σ_{f}	2.40	$\hat{eta}_{P^{f},f}$
LTV HH's	ϕ_h	0.23	$\hat{eta}_{C,h}$
LTV firms	ϕ_{f}	0.35	$\hat{eta}_{P^h,f}$

• calibration is consistent with similar estimates in literature details

- Won't target $\hat{\beta}_{l,h}$, $\hat{\beta}_{l,f} \Longrightarrow$ validation test
- $\cdot \,\, {\sf model's \ predictions \ vs \ data} \Longrightarrow {\sf employment}$

	Model	D	ata
	$\beta_{l,i}(\Theta)$	$\widehat{oldsymbol{eta}}_{l,i}$	95 % C I
Δau^h			
Δau^f			

- $\cdot \,\, {\sf model's \ predictions \ vs \ data} \Longrightarrow {\sf employment}$
 - $\implies \beta_{l,h}(\Theta)$ slightly underpredicts $\hat{\beta}_{l,h} \approx 15\%$

	Model	Data	
	$eta_{l,i}(oldsymbol{\Theta})$	$\widehat{oldsymbol{eta}}_{l,i}$	95 % CI
Δau^h	0.074	0.087	
Δau^f			

 $\cdot \,\, {\sf model's \ predictions \ vs \ data} \Longrightarrow {\sf employment}$

 $\implies \beta_{l,f}(\Theta)$ overpredicts $\hat{\beta}_{l,f} \approx 34\%$

	Model	Data	
	$eta_{l,i}(oldsymbol{\Theta})$	$\widehat{oldsymbol{eta}}_{l,i}$	95 % CI
Δau^h	0.074	0.087	
Δau^f	0.061	0.045	

 $\cdot \,\, {\sf model's \ predictions \ vs \ data} \Longrightarrow {\sf employment}$

 $\Longrightarrow \beta_{l,h}(\Theta)$, $\beta_{l,f}(\Theta)$ within 95% Cl

	Model	Data		
	$eta_{l,i}(oldsymbol{\Theta})$	$\widehat{\beta}_{l,i}$	95 % CI	
Δau^h	0.074	0.087	[0.6,0.12]	
Δau^f	0.061	0.045	[0.02,0.07]	

 $\cdot \,\, {\sf model's \ predictions \ vs \ data} \Longrightarrow {\sf employment}$

```
\Longrightarrow \beta_{l,h}(\Theta), \beta_{l,f}(\Theta) within 95% Cl
```

	Model	Data	
	$eta_{l,i}(oldsymbol{\Theta})$	$\widehat{\beta}_{l,i}$	95 % Cl
Δau^h	0.074	0.087	[0.6,0.12]
Δau^f	0.061	0.045	[0.02,0.07]

 \implies model does a fair job predicting $\hat{\beta}_{l,h}$ & $\hat{\beta}_{l,f}$

EMPLOYMENT FLUCTUATIONS, REAL ESTATE PRICES, AND PROPERTY TAXES

Measuring the Housing Wealth and Firm Collateral Channel

 \cdot decomposition result

$$\begin{split} \beta_{l,h} &= \delta^{\text{wealth}} + \delta_h^W + \delta_h^{p^l} \\ \beta_{l,f} &= \delta^{\text{coll}} + \delta_f^W + \delta_f^{p^h} \end{split}$$

 \cdot decomposition result

$$\boldsymbol{\beta_{l,h}} = \delta^{\text{wealth}} + \delta_h^W + \delta_h^{P^f}$$

$$\beta_{l,f} = \delta^{\text{coll}} + \delta_f^W + \delta_f^{P^h}$$

- Housing wealth channel

$$\uparrow \Delta \tau^h$$
 1 pp \implies -0.074 pp

\cdot decomposition result

$$\beta_{l,h} = \delta^{\text{wealth}} + \delta_h^W + \delta_h^{P^f}$$

$$\beta_{l,f} = \delta^{\text{coll}} + \delta_f^W + \delta_f^{P^h}$$

- Housing wealth channel

$$\uparrow \Delta \tau^h \, 1 \, \text{pp} \implies -0.074 \, \text{pp} = \underbrace{-0.073 \, \text{pp}}_{98 \, \%}$$

 \cdot decomposition result

$$\begin{split} \boldsymbol{\beta}_{l,h} &= \boldsymbol{\delta}^{\text{wealth}} + \boldsymbol{\delta}_{h}^{W} + \boldsymbol{\delta}_{h}^{p^{l}} \\ \boldsymbol{\beta}_{l,f} &= \boldsymbol{\delta}^{\text{coll}} + \boldsymbol{\delta}_{f}^{W} + \boldsymbol{\delta}_{f}^{p^{h}} \end{split}$$

- Housing wealth channel

$$\uparrow \Delta \tau^{h} 1 \text{ pp} \implies -0.074 \text{ pp} = \underbrace{-0.073 \text{ pp}}_{98 \%} + (-0.001) \text{ pp}$$

 \cdot decomposition result

$$\beta_{l,h} = \delta^{\text{wealth}} + \delta_h^W + \delta_h^{P^f}$$

$$\boldsymbol{\beta_{l,f}} = \delta^{\text{coll}} + \delta_f^W + \delta_f^{P^h}$$

- Firm collateral channel

$$\uparrow \Delta \tau^f$$
 1 pp \implies -0.061 pp

 \cdot decomposition result

$$\beta_{l,h} = \delta^{\text{wealth}} + \delta_h^W + \delta_h^{P^f}$$

$$\beta_{l,f} = \boldsymbol{\delta}^{\text{coll}} + \delta_f^W + \delta_f^{P^h}$$

- Firm collateral channel

$$\uparrow \Delta \tau^{f} 1 \text{ pp} \implies -0.061 \text{ pp} = \underbrace{-0.052 \text{ pp}}_{84 \%}$$

 \cdot decomposition result

$$\beta_{l,h} = \delta^{\text{wealth}} + \delta_h^W + \delta_h^{P^f}$$

$$\beta_{l,f} = \boldsymbol{\delta}^{\mathsf{coll}} + \boldsymbol{\delta}^{\mathsf{W}}_f + \boldsymbol{\delta}^{\mathsf{P}}_f$$

- Firm collateral channel

$$\uparrow \Delta \tau^f \, 1 \, \text{pp} \implies -0.061 \, \text{pp} = \underbrace{-0.052 \, \text{pp}}_{84 \, \%} + (-0.009) \, \text{pp}$$

- explain more than 80% decline in employment due to drop in real estate prices
 - Housing wealth channel

$$\uparrow \Delta \tau^{h} 1 \text{ pp} \implies -0.074 \text{ pp} = \underbrace{-0.073 \text{ pp}}_{98 \%} + (-0.001) \text{ pp}$$

$$- \text{ Firm collateral channel}$$

$$\uparrow \Delta \tau^{f} 1 \text{ pp} \implies -0.061 \text{ pp} = \underbrace{-0.052 \text{ pp}}_{84 \%} + (-0.009) \text{ pp}$$

- explain more than 80% decline in employment due to drop in real estate prices
 - \implies induced by higher property taxes
 - Housing wealth channel

$$\uparrow \Delta \tau^{h} 1 \text{ pp} \implies -0.074 \text{ pp} = \underbrace{-0.073 \text{ pp}}_{98 \%} + (-0.001) \text{ pp}$$

$$- \text{ Firm collateral channel}$$

$$\uparrow \Delta \tau^{f} 1 \text{ pp} \implies -0.061 \text{ pp} = \underbrace{-0.052 \text{ pp}}_{-0.052 \text{ pp}} + (-0.009) \text{ pp}$$

84 %

EMPLOYMENT FLUCTUATIONS, REAL ESTATE PRICES, AND PROPERTY TAXES

CONCLUSIONS

• THIS PAPER: unifying approach to model and quantify

 \implies housing wealth and firm collateral

- THIS PAPER: unifying approach to model and quantify
 - \implies housing wealth and firm collateral
 - reduced form estimates \Rightarrow 2012 Italian property tax reform + DID
 - GE model \rightarrow closed form decomposition \Longrightarrow due to \uparrow property taxes

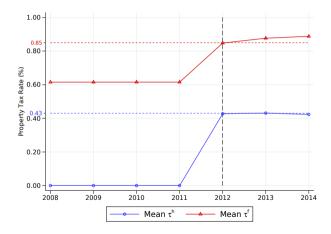
CONCLUSIONS

- THIS PAPER: unifying approach to model and quantify
 - \implies housing wealth and firm collateral
 - reduced form estimates \Rightarrow 2012 Italian property tax reform + DID
 - GE model \rightarrow closed form decomposition \Longrightarrow due to \uparrow property taxes
- both channels explain more than 80%
 - $\Longrightarrow \downarrow$ employment drop after \downarrow real estate prices

FUTURE WORK

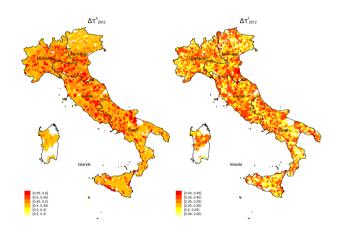
$\mathsf{EMPIRICAL}\ \mathsf{ANALYSIS} \Longrightarrow \mathsf{firm}\ \mathsf{level}\ \mathsf{analysis}\ \mathsf{using}\ \mathsf{balance}\ \mathsf{sheet}\ \mathsf{data}\ \mathsf{ORBIS}$

(i) How assets value and borrowing levels are changing?


 $MODEL \Longrightarrow$ check robustness of decomposition results

- (i) dynamics \implies role of expectations
- (ii) real estate market \implies demand + supply
- (iii) financial intermediation \implies assets + role of interest rate

THANK YOU


Sharp increase in $\tau^h \ \& \ \tau^f$ (back

 $\Delta au_{2012}^h pprox 322$ euros and $\Delta au_{2012}^f pprox 200$ euros

LARGE VARIATION IN τ^h & τ^f back

 $Var(\Delta \tau_{2012}^{i}) \approx 5 \times Var(\Delta \tau_{t \neq 2012}^{i}) i = \{h, f\}$

FIRST STAGE PROBLEM HOUSEHOLDS: FOC'S CACK

• HH's multipliers λ : budget constraint and μ_h collateral constraint. Solution

$$\{C\}: \quad \beta \ C^{\beta-1} \left(H^{h}\right)^{1-\beta} = \lambda + \mu^{h}$$

$$\{L\}: \quad \chi \ L^{\frac{1}{\nu}} = \lambda \ W$$

$$\{H^{h}\}: \quad (1-\beta) \ C^{\beta} \left(H^{h}\right)^{-\beta} = \lambda \ P^{h}(1+\tau^{h}) - \mu^{h} \ \phi_{h} \ P^{h}$$

$$C + P^{h}H^{h}(1+\tau^{h}) = WL + \Pi$$

$$\mu^{h} \left[C - \phi_{h}P^{h}H^{h}\right] = 0$$

FIRST STAGE PROBLEM HOUSEHOLDS: FOC'S CACK

• With focs 1st stage, solving for $\{C, H^h, L^s, \mu_h, \lambda\}$:

$$C = \frac{\phi_h}{1 + \tau^h + \phi_h} (WL + \Pi)$$
$$H^h = \frac{1}{P^h (1 + \tau^h + \phi_h)} (WL + \Pi)$$
$$L^s = \left[\frac{W\phi_h^\beta}{\chi (P^h)^{1-\beta} (1 + \tau^h + \phi_h)}\right]^{\nu}$$
$$\mu^h = \frac{1}{(\phi_h P^h)^{1-\beta}} \left[\beta - \frac{\phi_h}{1 + \tau^h + \phi_h}\right]$$
$$\lambda = \frac{\phi_h^\beta}{(P^h)^{1-\beta} (1 + \tau^h + \phi_h)}$$

FIRMS' PROBLEM: FOC'S BACK

• Firm's multiplier μ_j^f collateral constraint. solution

$$\{L_j\}: \quad \alpha\left(\frac{\epsilon-1}{\epsilon}\right)C^{\frac{1}{\epsilon}}L^{\alpha\left(\frac{\epsilon-1}{\epsilon}\right)-1}\left(H^h\right)^{(1-\alpha)\left(\frac{\epsilon-1}{\epsilon}\right)} = W(1+\mu_j^f)$$

$$\left\{H_j^f\right\}: \quad (1-\alpha)\left(\frac{\epsilon-1}{\epsilon}\right)C^{\frac{1}{\epsilon}}L_j^{\alpha\left(\frac{\epsilon-1}{\epsilon}\right)}\left(H_j^h\right)^{(1-\alpha)\left(\frac{\epsilon-1}{\epsilon}\right)-1} = P^f\left(1+\tau^f-\phi_f\,\mu_j^f\right)$$

$$\mu_j^f\left[WL_j-\phi_fP^fH_j^f\right] = 0$$

FIRMS' PROBLEM: SOLUTION CACK

• With firms' (ices), solving for $\left\{L_{j}^{d}, H_{j}^{f}, \mu_{j}^{f}, \right\}$:

$$L_{j}^{d} = \left[\alpha \ \frac{\epsilon - 1}{\epsilon}\right]^{\epsilon} \frac{C}{W^{1 + \alpha(\epsilon - 1)} \left(\phi_{f} P^{f}\right)^{(1 - \alpha)(\epsilon - 1)} \left(1 + \mu_{j}^{f}\right)^{\epsilon}}$$

$$H_{j}^{f} = \left[(1-\alpha) \frac{\epsilon-1}{\epsilon} \right]^{\epsilon} \frac{\phi_{f}^{\alpha(\epsilon-1)}C}{W^{\alpha(\epsilon-1)} \left(P^{f}\right)^{1+(1-\alpha)(\epsilon-1)} (1+\tau^{f}-\phi_{f}\mu_{j}^{f})^{\epsilon}}$$

$$\mu_j^f = \frac{\alpha \left(1 + \tau^f + \phi_f\right)}{\phi_f} - 1$$

COMPETITIVE EQUILIBRIUM (DEFINITION 1) GACK

A competitive equilibrium with binding constraints in this economy is defined by

- Prices $\{W, P^h, P^f, p_j\}$, allocations $\{L, H^h, H^f, C, c_j\}$
- Shadow values $\left\{\mu^h,\,\mu^f
 ight\}$ and property tax rates $\left\{\tau^h,\,\tau^f
 ight\}$

Such that:

1. Given $\left\{W, P^{h}, P^{f}, p_{j}\right\}$ and $\left\{\tau^{h}, \tau^{f}\right\}$

1.1 *L*, H^h and *C* solve 1st stage problem with $\mu^h \ge 0$ and (c_j) solve 2nd stage problem.

1.2 L and H^f maximize profits for firms with $\mu^f \geq$ 0.

1.3 H^h and H^f are consistent with real estate supply functions.

2. Given a $\left\{ L,\,H^{h},\,H^{f}
ight\}$ and $\left\{ \tau^{h},\,\tau^{f}
ight\}$

2.1 $\{W, P^{f}, P^{h}\}$ clear the markets for labor, houses and commercial real estate respectively.

BINDING COLLATERAL CONSTRAINTS (PROPOSITION 2) CALL

Let $\{W, P^h, P^f, \}$ and $\{L, H^h, H^f, C, \}$ denote the equilibrium price and allocation vector.

• Then, the household's borrowing constraint binds (i.e., μ^h >0) if and only if:

$$\frac{C}{WL+\Pi} < \beta$$

• Furthermore, the firm's collateral constraint binds (i.e., $\mu_i^f > 0$) if and only if:

$$\frac{WL_j}{WL_j + P^f H^f (1 + \tau^f)} < \alpha$$

LOG-LINEAR EQUILIBRIUM (PROPOSITION 3) (BACK)

Let $\Theta = [\alpha, \beta, \nu, \epsilon, \sigma_f, \sigma_h, \phi_h, \phi_f]$. Then, the competitive equilibrium with binding financial constraints is represented by the following equations.

$$\begin{aligned} A_h & \log \left(P^h \right) = \kappa_{P^h}(\Theta) + \left(1 + \nu \right) \left[\log \left(W \right) - \log \left(1 + \tau^h + \phi_h \right) \right] + \log \left(1 + \tau^f + \epsilon \phi_f \right) \\ A_f & \log \left(P^f \right) = \kappa_{P^f}(\Theta) + \left(1 + \sigma_h \right) \log \left(P^h \right) - \alpha(\epsilon - 1) \log \left(W \right) - \epsilon \log \left(1 + \tau^f + \phi_f \right) \\ & \log \left(L \right) = \log(\phi_f) + \left(1 + \sigma_f \right) \log \left(P^f \right) - \log \left(W \right) \\ & \log \left(C \right) = \log(\phi_h) + \left(1 + \sigma_h \right) \log \left(P^h \right) \end{aligned}$$

•
$$A_h = 1 + \sigma_h + (1 - \beta)\nu$$

•
$$A_f = 1 + \sigma_f + (1 - \alpha)(\epsilon - 1)$$

•
$$\kappa_{P^h}(\Theta)$$
, $\kappa_{P^f}(\Theta)$, $\kappa_W(\Theta)$ are a functions of Θ .

TAX INCREASE REDUCED FORM EFFECT (PROPOSITION 3)

For a given Θ , if $\frac{\tau^h}{1+\phi_h}$, $\frac{\tau^f}{1+\phi_f}$ and $\frac{\tau^f}{1+\epsilon\phi_f}$ are small enough the equilibrium response of $Y = \{P^h, P^f, L, C\}$ to an increase in property taxes equal to $(\Delta \tau^h, \Delta \tau^f)$ can be characterized as follows:

$$y = \beta_{y,h}(\Theta) \Delta \tau^h + \beta_{y,f}(\Theta) \Delta \tau^f$$

where is the $i = \{h, f\}$ and $\beta_{y,i}(\Theta)$ is the reduced form effect of a change in $\Delta \tau^i$ on y.

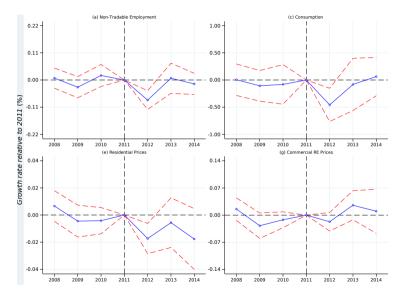
- $\Delta \tau^i = \tau_1^i \tau_0^i$: percentage point change in the tax rate
- $\beta_{y,i}(\Theta)$: reduced form effect of change in $\Delta \tau^i$ on y.

Reduced Form Coefficients Δau^h (back)

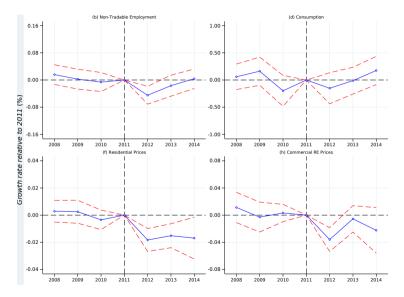
$$\begin{aligned} \beta_{l,h}(\Theta) &= (1+\sigma_f)\beta_{p^f,h}(\Theta) - \beta_{w,h}(\Theta) \\ \beta_{c,h}(\Theta) &= (1+\sigma_h)\beta_{p^h,h}(\Theta) \\ \beta_{p^h,h}(\Theta) &= -\frac{(1+\nu)\left[\alpha(\epsilon-1)(1+\sigma_f) + (1+\nu)A_f\right]}{A_{hf}(\epsilon-1)(1+\phi_h)} \\ \beta_{p^f,h}(\Theta) &= \frac{(1+\nu)\left[(1+\nu)(1+\sigma_h) - \alpha(\epsilon-1)(1-\beta)\nu\right]}{A_{hf}(\epsilon-1)(1+\phi_h)} \\ \beta_{w,h}(\Theta) &= -\frac{(1+\nu)\left[\sigma_f(1-\alpha)(1+\nu) + \alpha\nu(1+\sigma_f)\right] + \epsilon\phi_f(1+\nu)(1+\sigma_f)}{A_{hf}(\epsilon-1)(1+\phi_h)} \end{aligned}$$

$$A_{f} = 1 + \sigma_{f} + (1 - \alpha)(\epsilon - 1), A_{h} = 1 + \sigma_{h} + (1 - \beta)\nu$$
$$A_{hf} = \alpha(1 + \sigma_{f})A_{h} + (1 - \alpha)(1 + \nu)(1 + \sigma_{h})$$

Reduced Form Coefficients Δau^f (back)


$$\begin{split} \beta_{l,f}(\Theta) &= (1+\sigma_f)\beta_{p^f,f}(\Theta) - \beta_{w,f}(\Theta) \\ \beta_{c,f}(\Theta) &= (1+\sigma_h)\beta_{p^h,f}(\Theta) \\ \beta_{p^h,f}(\Theta) &= -\frac{(1+\phi_f)\left[(1-\alpha)(1+\nu)\sigma_f + \alpha\nu(1+\sigma_f)\right] + \epsilon\phi_f(1+\nu)(1+\sigma_f)}{A_{hf}(\epsilon-1)(1+\phi_f)(1+\epsilon\phi_f)} \\ \beta_{p^f,f}(\Theta) &= -\frac{(1+\nu)(1+\sigma_h)(1+(\epsilon+1)\phi_f) + \alpha(1-\beta)\nu(1+\phi_f)}{A_{hf}(\epsilon-1)(1+\phi_f)(1+\epsilon\phi_f)} \\ \beta_{w,f}(\Theta) &= -\frac{\left[1+\phi_f(\epsilon+1)\right]\left[(1+\sigma_h) + \sigma_f A_h\right] + (1-\beta)\nu\left[\alpha + (\epsilon+1)\phi_f\right]}{A_{hf}(\epsilon-1)(1+\phi_f)(1+\epsilon\phi_f)} \end{split}$$

$$A_f = 1 + \sigma_f + (1 - \alpha)(\epsilon - 1), A_h = 1 + \sigma_h + (1 - \beta)\nu$$
$$A_{hf} = \alpha(1 + \sigma_f)A_h + (1 - \alpha)(1 + \nu)(1 + \sigma_h)$$


ABOUT SAMPLE REPRESENTATIVENESS (BACK)

- sample of 6,220 municipalities
 - \implies representative for whole Italian economy
- for 2012
 - (1) 77.75% of total municipalities (\approx 8,000)
 - (2) 88% total population
 - (3) 89.5% total employment
 - (4) 93% total income

Even Study: Dynamic coefficients Δau^h (back)

Even Study: Dynamic coefficients Δau^f (back)

ROBUSTNESS CHECKS: RESULTS BACK

TRADABLES AND NON-TRADABLES DEFINITION

- Following Mian and Sufi (2014).
- ★ Tradable Industries:
 - Sectoral world trade (Exports+Imports) important magnitude relative sector size/output.
 - Economies of scale required \Rightarrow sector concentrated across the territory.
- ★ Non-Tradable Industries:
 - No trade across locations or with rest of the world.
 - Non-tradable sectors satisfy local demand \Rightarrow uniformly dispersed across territory.

TRADABLES AND NON-TRADABLES DEFINITION

- Let s be a 2-Digit (NACE Rev.2) industry code.
- using 2011 cross-section distribution:
 - Sector s Total Trade with ROW per employed person:

$$\mathrm{Trade}_{\mathrm{s}}^{\mathrm{E}} = \frac{X_{\mathrm{s}} + M_{\mathrm{s}}}{E_{\mathrm{s}}}$$

• Sector s Total Trade with ROW relative to Gross Output:

$$Trade_{s}^{Y} = \frac{X_{s} + M_{s}}{Y_{s}}$$

• Sector s Herfindahl-Hirschman Index (HHI):

$$HHI_{s} = \sum_{m} \left(\frac{E_{s,m}}{\sum_{m'} E_{s,m}} \right)$$

TRADABLES AND NON-TRADABLES DEFINITION CALL

• Procedure:

1. If $X_s + M_s > 0$: $Trade_s^{E} > Trade_{Median}^{E} \text{ or } Trade_s^{Y} > Trade_{Median}^{Y} \Rightarrow s \in Tradable$ 2. If $X_s + M_s > 0$ and 1. is not satisfied: $HHI_s > HHI_{P75}th \Rightarrow s \in Tradable$ 3. If $X_s + M_s = 0$: $HHI_s > HHI_{P75}th \Rightarrow s \in Tradable$ $HHI_s < HHI_{P25}th \Rightarrow s \in Non-Tradable$ • Thresholds:

$$\begin{aligned} \text{Trade}_{\text{Median}}^{E} &= 56487 \ \& \ \text{Trade}_{\text{Median}}^{Y} &= 0.16 \\ HHI_{\text{P25}^{\text{th}}} &= 0.0045 \ \& \ HHI_{\text{P75}^{\text{th}}} &= 0.015 \end{aligned}$$

NON-TRADABLE NACE INDUSTRIES (BACK)

- # Non-Tradable Industries = 7 (Exclude Construction Sector)
- Mean HHI Non-Tradables = 0.0068

Division	Division Name	Section	HHI
49	Land transport and transport via pipelines	Н	0.0092
55	Accommodation	1	0.0075
46	Wholesale trade	G	0.0078
56	Food and beverage service activities	I	0.0074
47	Retail trade	G	0.0056
33	Repair & inst. of machinery & equip.	С	0.0051
45	Wholesale and retail trade vehicles & motorcycles	G	0.0043
43	Specialised construction activities	F	0.0032
42	Civil Engineering	F	0.0034
41	Construction of buildings	F	0.0035

Back to TNT def

TRADABLE NACE INDUSTRIES: PART A BACK

- # Tradable Industries = 28
- Mean HHI Tradables = 0.017

Division	Name	Section	Trade ^E	Trade ^y	HHI
19	Manuf. coke & petroleum	С	595208	0.31	0.03
20	Manuf. chemicals	С	487905	0.79	0.013
29	Manuf. vehicles	С	336130	0.79	0.03
24	Manuf. basic metals	С	285574	0.6	0.017
26	Manuf. computer/elect/opt	С	239425	0.44	0.027
21	Manuf. Pharma	С	218005	0.9	0.013
30	Manuf. other transport equip.	С	156098	0.17	0.013
10	Manuf. food products	С	138202	0.2	0.002
28	Manuf. machinery and equip.	С	135429	0.27	0.003
17	Manuf. paper/products	С	131726	0.29	0.004
27	Manuf. electrical equip.	С	116954	0.24	0.003
15	Manuf. leather/products	С	108611	0.67	0.009

TRADABLE NACE INDUSTRIES: PART B BACK

Division	Name	Section	Trade ^E	Trade ^v	ННІ
32	Other manuf.	С	89349	0.13	0.008
22	Manuf. rubber/plastic	С	82638	0.23	0.002
13	Manuf. textiles	С	75699	0.44	0.009
14	Manuf. wearing apparel	С	73500	0.59	0.003
23	Manuf. other non-metalic	С	49033	0.25	0.003
31	Manuf. furniture	С	28915	0.22	0.005
61	Telecom.	Н			0.03
53	Postal/courier serv.	J			0.03
63	Information serv.	J			0.035
62	Computer programming serv.	J			0.036
93	Sport/Recreation activ.	R			0.06
50	Water transport	Н			0.115
65	Insurance/pension funding	K			0.132
60	Broadcast. activ.	J			0.17
51	Air transport	Н			0.305
12	Manuf. tobacco	C			0.338

HOUSEHOLD CONSUMPTION ON VEHICLES (BACK)

• Idea: Mian, Rao and Sufi (2013)

$$X_{m,t}^{\text{cars}} = \omega_{m,t} \cdot X_t^{\text{cars}}, \ \omega_{m,t} = \frac{P_{m,t}^{\text{Cars}} \ Q_{m,t}^{\text{Cars}}}{P_t^{\text{Cars}} \ Q_t^{\text{Cars}}}$$

• Assume:

$$\frac{P_{m,t}^{Cars}}{P_t^{Cars}} = p_m^{cars} \Rightarrow X_{m,t}^{cars} \propto \omega_{m,t}^Q \cdot X_t^{cars} = \frac{Q_{m,t}^{Cars}}{Q_t^{Cars}} \cdot X_t^{cars}$$

• Data new vehicles registrations 2009-2015

$$\hat{\omega}_{m,t}^{Q} = \frac{\text{New Cars Registered}_{m,t}}{\sum_{m} \text{New Cars Registered}_{m,t}}$$

• Durable Expenditure proxy $C_{m,t}^{dur}$:

$$C_{m,t}^{dur} = \hat{\omega}_{m,t}^Q \cdot C_t^{cars}$$

 C_t^{cars} = Household Final Expenditure, Purchase of Vehicles at t

Car definition

NEW VEHICLE REGISTRATION DATA BACK

Vehicle categories:

- (1) Cars.
- (2) Bus.
- (3) Trucks for Goods Transport.
- (4) Vehicles for Special Use.
- (5) Motorcycles.
- (6) Motorcycles & Quadricycles for Special Use.
- (7) Trailers & Semi-Trailers for Goods Transport.
- (8) Trailers & Semi-Trailers for Special Use.
- (9) Tractors.

Cars

Vehicles intended for the transport of persons, with a maximum of nine seats, including that of driver

REAL STATE PRICES: REAL STATE OBSERVATORY (OMI)

- Homogeneous real state markets within *m* (OMI zones).
- Data on property and rental values (per m^2)
 - Based on restricted data on transactions across Italy + Surveys local housing markets.
 - Only Minimum and maximum values reported.
 - By type of property and maintenance state.
 - Biannual frequency, period 2007H1-2014H2.
- Annual real state price: Average values across OMI zones for second semester of each year.

SUMMARY STATISTICS: MAIN VARIABLES (BACK)

	Mean	S.D	P^{25}	P^{50}	P^{75}
Population	8,278	44,961	1,209	2,819	6,919
Area (mi²)	58.38	108.65	8.63	21.79	54.39
Income ^{pc}	11,376	2,961	8,854	11,740	13,469
L^{tot}	2,193	16,502	139	489	1,554
share L ^{ntrad} (%)	41	14	31	41	50
share L ^{trad} (%)	17	15	4	12	26
Δau^h	0.43	0.07	0.40	0.40	0.50
Δau^{f}	0.24	0.10	0.16	0.25	0.31
$\Delta L^{\rm tot}$	-0.17	7.47	-3.52	-0.67	2.54
ΔL^{ntrad}	2.44	7.95	-2.20	1.28	5.67
ΔL^{trad}	-2.08	19.35	-7.73	-1.02	3.36
ΔC	-5.09	71.58	-57.17	-9.61	30.07
ΔP^{House}	-1.81	4.03	-4.06	0.00	0.00
ΔP^{CRE}	-1.88	3.43	-3.02	0.00	0.00

Summary Statistics - 2012: Municipal Level Variables

SUMMARY STATISTICS: LOCAL GOVERNMENT FINANCES

Summary Statistics - 2012: Local Government Municipal Level

	Mean	S.D	P^{25}	P^{50}	P^{75}
ΔT_{pc}^{c}	1.3	13.8	-6.7	-0.2	8.9
ΔG_{pc}^{c}	-4.6	10.6	-11.0	-4.2	1.8
ΔT_{pc}^{trans}	-17.0	47.1	-43.3	-17.4	12.1
ΔT_{pc}^{prin}	14.8	85.1	-6.1	15.2	33.1
ΔT_{pc}^{sec}	139.9	110.3	172.9	195.2	200.0
Deficit/ <i>T</i> ^c	-9.4	9.6	-15.3	-9.3	-3.9
Debt/ <i>T</i> ^c	90.1	65.6	42.5	78.3	124.7
$T^{\text{irpef}}/T^{\text{c}}$	7.1	4.3	4.2	7.3	9.2
T ^{prop} /T ^c	26.2	11.2	19.6	27.0	33.2
T ^{trans} /T ^c	34.3	25.8	17.7	28.5	41.7

SUMMARY STATISTICS: MAIN VARIABLES (BACK)

	Mean	S.D	P^{25}	P^{50}	P^{75}
Population	8,278	44,961	1,209	2,819	6,919
Area (mi²)	58.38	108.65	8.63	21.79	54.39
Income ^{pc}	11,376	2,961	8,854	11,740	13,469
L^{tot}	2,193	16,502	139	489	1,554
share L ^{ntrad} (%)	41	14	31	41	50
share L ^{trad} (%)	17	15	4	12	26
Δau^h	0.43	0.07	0.40	0.40	0.50
Δau^{f}	0.24	0.10	0.16	0.25	0.31
$\Delta L^{\rm tot}$	-0.17	7.47	-3.52	-0.67	2.54
ΔL^{ntrad}	2.44	7.95	-2.20	1.28	5.67
ΔL^{trad}	-2.08	19.35	-7.73	-1.02	3.36
ΔC	-5.09	71.58	-57.17	-9.61	30.07
ΔP^{House}	-1.81	4.03	-4.06	0.00	0.00
ΔP^{CRE}	-1.88	3.43	-3.02	0.00	0.00

Summary Statistics - 2012: Municipal Level Variables

SUMMARY STATISTICS: LOCAL GOVERNMENT FINANCES

Summary Statistics - 2012: Local Government Municipal Level

	Mean	S.D	P^{25}	P^{50}	P^{75}
ΔT_{pc}^{c}	1.3	13.8	-6.7	-0.2	8.9
ΔG_{pc}^{c}	-4.6	10.6	-11.0	-4.2	1.8
ΔT_{pc}^{trans}	-17.0	47.1	-43.3	-17.4	12.1
ΔT_{pc}^{prin}	14.8	85.1	-6.1	15.2	33.1
ΔT_{pc}^{sec}	139.9	110.3	172.9	195.2	200.0
Deficit/ <i>T</i> ^c	-9.4	9.6	-15.3	-9.3	-3.9
Debt/ <i>T</i> ^c	90.1	65.6	42.5	78.3	124.7
$T^{\text{irpef}}/T^{\text{c}}$	7.1	4.3	4.2	7.3	9.2
T ^{prop} /T ^c	26.2	11.2	19.6	27.0	33.2
T ^{trans} /T ^c	34.3	25.8	17.7	28.5	41.7

\cdot baseline specification

$$y_{m,t}^{\text{Baseline}} = \mathsf{FE}_m + \mathsf{FE}_t + \beta_{y,h} \ \Delta \tau_{m,t}^h \times \mathsf{1}\{t = 2012\} + \beta_{y,f} \ \Delta \tau_{m,t}^f \times \mathsf{1}\{t = 2012\}$$

• productivity shocks $\implies z_{m,t-1}$

$$y_{m,t} = y_{m,t}^{\text{Baseline}} + \omega_{y,h}^{z} \Delta \tau_{m,2012}^{h} \times z_{m,t-1} + \omega_{y,f}^{z} \Delta \tau_{m,2012}^{f} \times z_{m,t-1} + \epsilon_{m,t}$$

$$- Z_{m,t} =$$
 Real total income per employee (2010=100)

$$- Z_{m,t} = \frac{Z_{m,t}-Z_{m,t-1}}{(Z_{m,t}+Z_{m,t-1})/2}$$

CREDIT SUPPLY HYPOTHESIS: IMPLEMENTATION (BACK)

\cdot baseline specification

$$y_{m,t}^{\text{Baseline}} = \text{FE}_m + \text{FE}_t + \beta_{y,h} \ \Delta \tau_{m,t}^h \times 1\{t = 2012\} + \beta_{y,f} \ \Delta \tau_{m,t}^f \times 1\{t = 2012\}$$
• credit supply shocks $\implies \left(\frac{\text{Loan}}{\text{Deposits}}\right)_{m,t-1}$

$$y_{m,t} = y_{m,t}^{\text{Baseline}} + \omega_{y,h}^{\text{loan}} \ \Delta \tau_{m,2012}^h \times \left(\frac{\text{Loan}}{\text{Deposits}}\right)_{m,t-1} + \omega_{y,f}^{\text{loan}} \ \Delta \tau_{m,2012}^f \times \left(\frac{\text{Loan}}{\text{Deposits}}\right)_{m,t-1} + \epsilon_{m,t}^4$$

- Loans and Deposits of all bank branches within municipality

 \cdot baseline specification

$$y_{m,t}^{\text{Baseline}} = \mathsf{FE}_m + \mathsf{FE}_t + \beta_{y,h} \ \Delta \tau_{m,t}^h \times \mathsf{1}\{t = 2012\} + \beta_{y,f} \ \Delta \tau_{m,t}^f \times \mathsf{1}\{t = 2012\}$$

 $\cdot \, \operatorname{uncertainty} \operatorname{shocks} \Longrightarrow \sigma^{\scriptscriptstyle Z}_{\operatorname{P}, t-1}$

$$y_{m,t} = y_{m,t}^{\text{Baseline}} + \omega_{y,h}^{\text{uncert}} \ \Delta \tau_{m,2012}^{h} \times \sigma_{\text{P},t-1}^{z} + \omega_{y,f}^{\text{uncert}} \ \Delta \tau_{m,2012}^{f} \times \sigma_{\text{P},t-1}^{z} + \epsilon_{m,t}$$

 $-\sigma^{z}_{\mathrm{P,t-1}}$: sample standard deviation z across municipalities within province P

$$\sigma_{\mathsf{P},t}^{z} = \sqrt{\frac{1}{N_{m\in\mathsf{P}}-1} \sum_{m\in\rho} \left[Z_{m,t} - \overline{Z}_{\mathsf{P},t} \right]^{2}}$$
$$\overline{Z}_{\mathsf{P},t} = \frac{1}{N_{m\in\mathsf{P}}} \sum_{m\in\rho} Z_{m,t}$$

ADDITIONAL COVARIATES: IMPLEMENTATION GACK

 \cdot baseline specification

$$y_{m,t}^{\text{Baseline}} = \mathsf{FE}_m + \mathsf{FE}_t + \beta_{y,h} \ \Delta \tau_{m,t}^h \times \mathsf{1}\{t = \mathsf{2012}\} + \beta_{y,f} \ \Delta \tau_{m,t}^f \times \mathsf{1}\{t = \mathsf{2012}\}$$

· controlling for municipal time varying covariates $\Longrightarrow X_{m,t-1}$

$$y_{m,t} = y_{m,t}^{\text{Baseline}} + X_{m,t-1} \mathbf{\Gamma} + \epsilon_{m,t}$$

 $X_{m,t-1}$ includes:

- Local economic conditions details
- Supply Side Controls details
- Local Government Controls details
- Other Local Tax Policy Changes details

LOCAL ECONOMIC CONDITIONS

- (1) Growth rate income per-capita (2010=100).
- (2) Log-level income per-capita (2010=100).
- (3) Growth rate total employment.
- (4) Growth rate total employment in local labor market.
- (5) Net Internal Migration rate:

 $\frac{\text{\# Move in to } m - \text{\# Move out from } m}{\text{Population}_m}$

SUPPLY SIDE CONTROLS (BACK)

(1) Employment share 1-digit NACE Rev.2: For $j = \{C, D, E, F, ..., R, S\}$.

Share Employment_{*m,j*} =
$$\frac{E_{m,j}}{\sum_{j=c}^{S} E_{m,j}}$$

- Example:
 - *C* = Manufactures.
 - *F* = Construction.
 - G = Wholesale and Retail Trade.
- Employment for A and B is restricted data, so I exclude both divisions from sample.

LOCAL GOVERNMENT CONTROLS

- (1) Growth rate Current Revenues (2010=100).
- (2) Growth rate Current Expenditure (2010=100).
- (3) Share Revenues Income Surcharge (IRPEF).
- (4) Share Revenues Property Taxes.
- (5) Share Revenues Transfers General and Regional Government.
- (6) Total Debt-Current Revenue ratio.
- (7) Interest Expenditure-Current Expenditure ratio.
- (8) Capital Expenditure-Current Expenditure ratio.
- (9) Revenues from Transfers-Current Revenue ratio.
- (10) Property Taxes Revenue-Current Revenue ratio.

OTHER LOCAL TAX POLICY CHANGES (BACK)

(1) 2008 Exemption of Main Residence from households:

$$1\{t = 2008\} \times \Delta \tau_{m,2008}^{prin}$$

(2) 2011 Tax Income changes.

$$1\{t = 2011\} \times Ln\left(\frac{R_{m, \text{IRPEF}}}{\text{Population}_{m, 2011}}\right)$$

(3) 2014 Property tax changes.

$$1\{t = 2014\} \times Ln\left(\frac{R_{m,\text{TASI}}}{\text{Population}_{m,2013}}\right)$$

SPILLOVER EFFECTS: IMPLEMENTATION (BACK)

 \cdot baseline specification

$$y_{m,t}^{\text{Baseline}} = \mathsf{FE}_m + \mathsf{FE}_t + \beta_{y,h} \ \Delta \tau_{m,t}^h \times \mathsf{1}\{t = \mathsf{2012}\} + \beta_{y,f} \ \Delta \tau_{m,t}^f \times \mathsf{1}\{t = \mathsf{2012}\}$$

· controlling for local labor market trends $\implies \delta_{m \in LLS,t} = FE_{LLS} \times FE_t$

$$y_{m,t} = y_{m,t}^{\text{Baseline}} + \delta_{m \in \text{LLS},t} + \epsilon_{m,t}$$

Local Labor Market (LLS) \implies Commuting Zones

- Group of neighbor municipalities
- Labor force lives and works
- Establishments can find most of the labor force

TESTING FOR PARALLEL TRENDS: IMPLEMENTATION

 \cdot event study analysis approach

$$y_{m,t} = \mathsf{FE}_m + \mathsf{FE}_t + \sum_{\tilde{t} \neq 2011} \beta_{y,h}^{\tilde{t}} \, 1\{t = \tilde{t}\} \times \Delta \tau_{m,2012}^h + \sum_{\tilde{t} \neq 2011} \beta_{y,f}^{\tilde{t}} \, 1\{t = \tilde{t}\} \times \Delta \tau_{m,2012}^f + \epsilon_{m,t}$$

- \cdot lead coefficients \Longrightarrow pre-tax reform trend differences
 - $\ eta_{y,i}^{2008} \ eta_{y,i}^{2009} \ eta_{y,i}^{2010}$
 - Base year 2011 $\Longrightarrow \beta_{y,i}^{2011} = 1$
- testing for parallel trends

$$H_{o}: \ \beta_{y,i}^{2008} = \beta_{y,i}^{2009} = \beta_{y,i}^{2010} = 0$$

TESTING FOR PARALLEL TRENDS: IMPLEMENTATION (BACK)

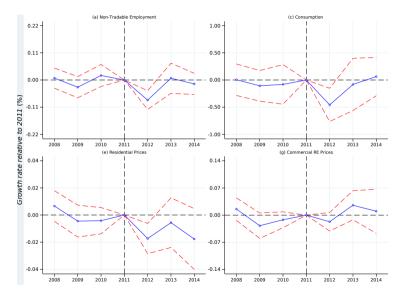
• event study analysis approach

$$y_{m,t} = \mathsf{FE}_m + \mathsf{FE}_t + \sum_{\tilde{t} \neq 2011} \beta_{y,h}^{\tilde{t}} \, 1\{t = \tilde{t}\} \times \Delta \tau_{m,2012}^h + \sum_{\tilde{t} \neq 2011} \beta_{y,f}^{\tilde{t}} \, 1\{t = \tilde{t}\} \times \Delta \tau_{m,2012}^f + \epsilon_{m,t}$$

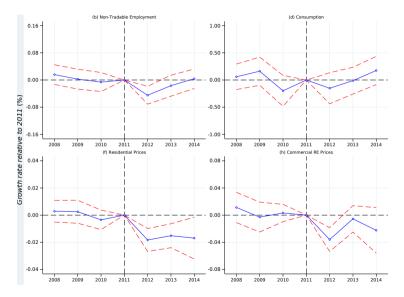
• testing for parallel trends

$$H_o: \ \beta_{y,i}^{2008} = \beta_{y,i}^{2009} = \beta_{y,i}^{2010} = 0$$

- · RESULTS \Rightarrow no trend differences
 - for Δau^h : results
 - for $\Delta \tau^f$: results


TESTING FOR PARALLEL TRENDS: IMPLEMENTATION GACK

• event study analysis approach


$$y_{m,t} = \mathsf{FE}_m + \mathsf{FE}_t + \sum_{\tilde{t} \neq 2011} \beta_{y,h}^{\tilde{t}} \, 1\{t = \tilde{t}\} \times \Delta \tau_{m,2012}^h + \sum_{\tilde{t} \neq 2011} \beta_{y,f}^{\tilde{t}} \, 1\{t = \tilde{t}\} \times \Delta \tau_{m,2012}^f + \epsilon_{m,t}$$

- no trend differences \implies consistent with Alesina and Paradisi (2017)
 - Primarily explained by the staggered timing of local elections
 - Completely unrelated to business cycle fluctuations determinants
 - Timing of elections is as good as random assignment

Even Study: Dynamic coefficients Δau^h (back)

Even Study: Dynamic coefficients Δau^f (back)

BALANCING ACROSS TREATMENT INTENSITY GROUPS: IMPLEMENTATION

- \cdot examine the similarities across municipalities with different Δau^h & Δau^f
- $\cdot \ \Delta au^h$ & $\Delta au^f \Longleftrightarrow$ compositional changes for other observable characteristics
- following Wing et al.(2018)

$$x_{m,t} = \mathsf{FE}_m + \mathsf{FE}_t + \theta_{\mathsf{x},h} \,\Delta \tau^h_{m,2012} + \theta_{\mathsf{x},f} \,\Delta \tau^f_{m,2012} + \mu_{m,t} \tag{8}$$

 $\boldsymbol{x}_{m,t}$

- local economic and financial conditions details
- industry employment shares details
- migration patterns details
- financial conditions of local governments details

BALANCING ACROSS TREATMENT INTENSITY GROUPS: IMPLEMENTATION

- \cdot examine the similarities across municipalities with different Δau^h & Δau^f
- $\Delta \tau^h$ & $\Delta \tau^f \iff$ compositional changes for other observable characteristics
- following Wing et al.(2018)

$$x_{m,t} = FE_m + FE_t + \theta_{x,h} \,\Delta \tau^h_{m,2012} + \theta_{x,f} \,\Delta \tau^f_{m,2012} + \mu_{m,t} \tag{8}$$

testing for no compositional changes

$$Ho: \theta_{x,h} = \theta_{x,f} = 0$$

 \implies RHo \implies evidence of imbalances across municipalities

- (1) growth rate of income per capita (Δ Income^{*pc*})
- (2) log of income per capita (Income^{pc})
- (3) log deposits (Depos)
- (4) log loans (Loan)

(1) Employment share 1-digit NACE Rev.2:

Share Employment_{*m,j*} =
$$\frac{E_{m,j}}{\sum_{j=c}^{S} E_{m,j}}$$

- For $j = \{C, F, G\}$.
 - $C = Manufactures (shL_{man})$
 - F = Construction (shL_{cons})
 - G = Wholesale and Retail Trade (shL_{ret})

(1) In-Migration rate (Mig^{In})

Move in to m
Population_m

(2) Out-Migration rate (Mig^{Out})

 $\frac{\text{\# Move out from } m}{\text{Population}_m}$

- (1) per capita real growth rate for current revenues (ΔT_{C})
- (2) per capita real growth rate for current expenditures ($\Delta G_{\rm C}$)
- (3) investment rate $(G^{K}/G^{C}) \Longrightarrow$ capital expenditure-current expenditure ratio
- (4) Total Debt-Current Revenue ratio.
- (5) deficit-to-revenues ratio (Deficit/ T_c)

	Income Growth	Income	Loans	Deposits
	$(heta_{\Delta \operatorname{Inc}^{pc},i})$	$(\theta_{\operatorname{Inc}^{pc},i})$	$(\theta_{\text{Loans},i})$	$(\theta_{\text{Depos},i})$
$\Delta au_{m,2012}^h$	-0.001	-0.002	-0.009	0.028
	(0.007)	(0.004)	(0.025)	(0.022)
$\Delta au_{m,2012}^{f}$	-0.008	-0.002	-0.001	0.004
,	(0.005)	(0.004)	(0.016)	(0.017)
$Ho: \theta_{x,h} = \theta_{x,f} = 0$ (p-val)	0.25	0.77	0.93	0.42
N _{obs}	43,540	43,540	14,185	14,185
N _{mun}	6,220	6,220	2,089	2,089
\bar{R}^2	0.10	0.99	0.99	0.99

	Migration Rate		Employment Share		
	In Out		Manuf.	Const.	Retail
	$(\theta_{Mig^{in},i})$	$(\theta_{Mig^{out},i})$	$(heta_{sh\ L^{man},i})$	$(heta_{sh\ L^{cons},i})$	$(heta_{sh\ L^{ret},i})$
$\Delta au_{m,2012}^h$	0.002	0.001	0.004	0.010**	0.000
	(0.002)	(0.002)	(0.005)	(0.005)	(0.005)
$\Delta au^f_{m,2012}$	0.001	-0.001	-0.004	0.002	-0.001
,	(0.001)	(0.001)	(0.004)	(0.004)	(0.003)
$Ho: \theta_{x,h} = \theta_{x,f} = 0 \text{ (p-val)}$	0.39	0.73	0.51	0.10	0.94
N _{obs}	43,540	43,540	43,540	43,540	43,540
N _{mun}	6,220	6,220	6,220	6,220	6,220
\bar{R}^2	0.40	0.62	0.96	0.90	0.90

	Rev. Growth $(\theta_{\Delta T^c,i})$	Expend. Growth $(heta_{\Delta^{G^c},i})$	Investment Rate $(heta_{G^{\kappa}/G^{c},i})$	Deficit-to- T^c Ratio ($ heta_{Deficit/T^c,i}$)	Debt-to- T^c Ratio $(heta_{B/T^c,i})$
$\Delta au^h_{m,2012}$	0.072**	-0.065**	-0.025	-0.137***	-0.122*
,	(0.032)	(0.029)	(0.057)	(0.024)	(0.069)
$\Delta au_{m,2012}^{f}$	0.20***	-0.006	-0.052	-0.175***	-0.143***
	(0.024)	(0.025)	(0.046)	(0.015)	(0.047)
$Ho: heta_{x,h} = heta_{x,f} = 0 \ (p-val)$	0.00	0.10	0.46	0.00	0.01
N _{obs}	43,519	43,519	43,540	43,519	43,519
N _{mun}	10,158	10,158	6,220	10,158	10,158
\bar{R}^2	0.92	0.93	0.53	0.27	0.59

CALIBRATION VS LITERATURE

- Using 2012 Survey of Households, Income and Wealth (SHIW) for Italy
- Average LTV-ratio

	Parameter	Value	Target
Supply elast. houses	σ_h	4.87	$\hat{eta}_{P^h,h}$
Supply elast. CRE	σ_{f}	2.40	$\hat{\beta}_{P^{f},f}$
LTV HH's	ϕ_h	0.23	$\hat{\beta}_{C,h}$
LTV firms	ϕ_{f}	0.35	$\hat{eta}_{P^h,f}$

CALIBRATION VS LITERATURE

- Using 2012 Survey of Households, Income and Wealth (SHIW) for Italy
- Average LTV-ratio
 - For hh's that own single home $\Rightarrow 0.42$
 - For hh's own CRE and don't rent it $\Rightarrow 0.50$

	Parameter	Value	Target
Supply elast. houses	σ_h	4.87	$\hat{\beta}_{P^h,h}$
Supply elast. CRE	σ_{f}	2.40	$\hat{eta}_{P^{f},f}$
LTV HH's	ϕ_h	0.23	$\hat{\beta}_{C,h}$
LTV firms	ϕ_f	0.35	$\hat{eta}_{P^h,f}$

CALIBRATION VS LITERATURE

- For $\sigma_h \Rightarrow$ benchmark Saiz (2010)
 - Instrument $\Delta \mathcal{H}^{h,d}$ \Rightarrow industrial shares, migration and hours of sun
 - Estimated value \approx 16.67 (See TABLE III, column (4))
 - Use data change in housing prices for 1970-2000

	Parameter	Value	Target
Supply elast. houses	σ_h	4.87	$\hat{eta}_{P^h,h}$
Supply elast. CRE	σ_{f}	2.40	$\hat{eta}_{P^{f},f}$
LTV HH's	ϕ_h	0.23	$\hat{\beta}_{C,h}$
LTV firms	ϕ_{f}	0.35	$\hat{eta}_{P^h,f}$

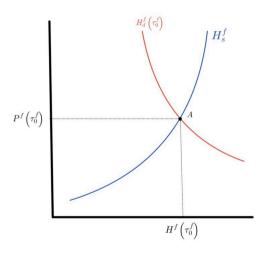
ABOUT ECONOMIC SIGNIFICANCE

	Non-Tradable Employment $\widehat{eta}_{l,i}$	Consumption Expenditure $\widehat{\beta}_{c,i}$	Housing Price $\widehat{eta}_{p^{\mathrm{h}},i}$	Commercial RE Price $\widehat{\beta}_{p^{\mathrm{f}},i}$
$\Delta \tau^h_{m,t} \times 1\{t = 2012\}$	-0.087***	-0.517***	-0.022**	-0.005
$\Delta \tau^f_{m,t} \times 1\{t = 2012\}$	(0.015) -0.045*** (0.011)	(0.145) -0.177 (0.120)	(0.009) -0.017*** (0.006)	(0.010) -0.032*** (0.008)
IQR _y /IQR _{y,h} (%) IQR _y /IQR _{y,f} (%)	11.0 8.5	5.9 0.87	5.5 6.3	1.6 15.7

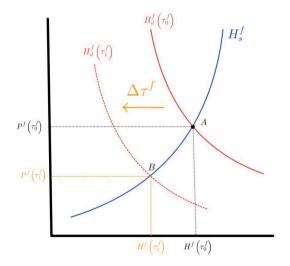
*p < 0.1, **p < 0.05, ***p < 0.01

BASELINE RESULTS BACK

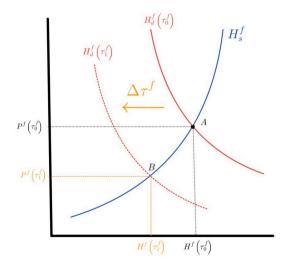
	Non-Tradable Employment $\widehat{eta}_{l,i}$	Consumption Expenditure $\widehat{eta}_{c,i}$	Housing Price $\widehat{eta}_{p^{\mathrm{h}},i}$	Commercial RE Price $\widehat{\beta}_{p^{\mathrm{f}},i}$
$\Delta \tau_{m,t}^h \times 1 \{t = 2012\}$ $\Delta \tau_{m,t}^f \times 1 \{t = 2012\}$	-0.087***	-0.517***	-0.022**	-0.005
	(0.015)	(0.145)	(0.009)	(0.010)
	-0.045***	-0.177	-0.017***	-0.032***
	(0.011)	(0.120)	(0.006)	(0.008)

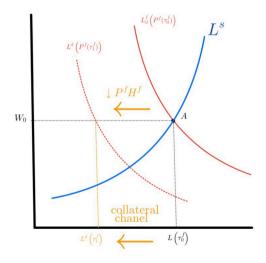

*p < 0.1, **p < 0.05, ***p < 0.01

BASELINE RESULTS BACK

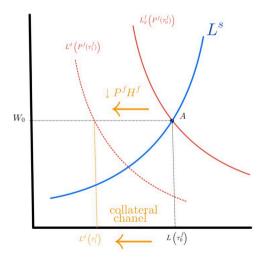

	Non-Tradable Employment $\widehat{eta}_{l,i}$	Consumption Expenditure $\widehat{eta}_{c,i}$	Housing Price $\widehat{eta}_{p^{h},i}$	Commercial RE Price $\widehat{\beta}_{p^{\mathrm{f}},i}$
$\Delta \tau_{m,t}^h \times 1 \{t = 2012\}$ $\Delta \tau_{m,t}^f \times 1 \{t = 2012\}$	-0.087***	-0.517***	-0.022**	-0.005
	(0.015)	(0.145)	(0.009)	(0.010)
	-0.045***	-0.177	-0.017***	-0.032***
	(0.011)	(0.120)	(0.006)	(0.008)

*p < 0.1, **p < 0.05, ***p < 0.01

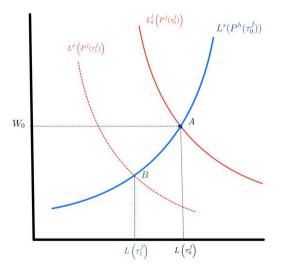

CRE market


• CRE market $\Longrightarrow \uparrow \tau^f$

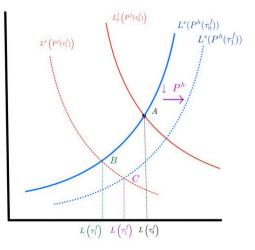
• CRE market $\Longrightarrow \uparrow \tau^f \Longrightarrow \downarrow P^f$ and $\downarrow H^f$



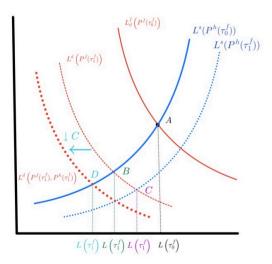
• Labor market $\rightarrow \uparrow \tau^f \Longrightarrow \downarrow P^f H^f$


GE ADJUSTMENT: INTUITION (BACK)

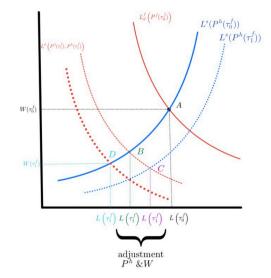
• Labor market $\rightarrow \uparrow \tau^f \Longrightarrow \downarrow P^f H^f$


GE ADJUSTMENT: INTUITION BACK

• Labor market $\rightarrow \uparrow \tau^{f} \Longrightarrow$ adjustment along labor supply


GE ADJUSTMENT: INTUITION BACK

• Labor market $\rightarrow \uparrow \tau^f \rightarrow \downarrow P^h \Longrightarrow$ wealth effect labor supply


GE ADJUSTMENT: INTUITION (BACK)

• Labor market $\rightarrow \uparrow \tau^f \rightarrow \downarrow C \Longrightarrow \downarrow L^d$

GE ADJUSTMENT: INTUITION BACK

• Labor market $\rightarrow \uparrow \tau^f \Longrightarrow$ GE adjustment of P^h and W

