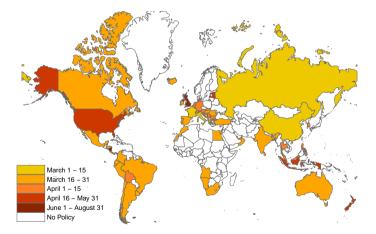
Consumer Debt Moratoria

Bulent Guler Indiana University Yasin Kürşat Önder Ghent University Mauricio Villamizar Central Bank of Colombia Jose Villegas Ghent University

October 11th 2024


Internal Seminar: Macroeconomics, Policy & Econometrics

Motivation, why is it important?

- · Debt moratorium: payment suspension of a debt instrument.
- One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." –Qur'an
 2:280
- A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions.

Motivation, why is it important?

- Moratorium policies gained prominence in the wake of the 2020 pandemic.
 - DEBT MORATORIA remains largely unexplored in both empirical and theoretical contexts.

Two main contributions:

- 1. (Empirical) Investigate causal impact of mortgage moratorium on households. (new)
 - Causal evidence use administrative level Colombian data
- 2. (Quantitative) A heterogeneous agent life-cycle incomplete market model. (new)
 - Aggregate implications, long run effect, and policy counterfactual comparisons.

What do we find?

- 1. Moratoria improved economic conditions stressed households
 - \uparrow Consumption
 - \downarrow Delinquency probability
- 2. Moratoria mitigates the negative response of the economy to an aggregate productivity shock.
 - Welfare improving for both HHs banks.
 - Payment suspension with interest rates are not accrued is a better alternative.

TODAY'S PRESENTATION

I. EMPIRICAL STRATEGY

- \cdot The Colombian Case
- Identification
- Main Results: Consumption and Delinquency

II. QUANTITATIVE MODEL

- Model
- \cdot Calibration
- Model Results: Aggregate Effect, Alternative Policies

III. CONCLUSIONS

Empirical Strategy

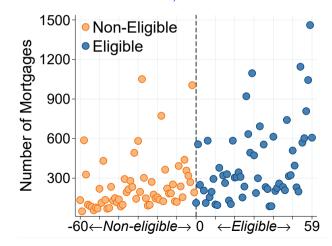
The Colombian Case

Data

- Colombian credit registry from Q1-2019 to Q4-2021.
 - · Comprise universe of loans between bank-individual pairs.
 - Borrowing and loan delinquency information at quarterly frequency.
 - We can identify mortgages treated by moratoria in 2020.
- We employ 152,000 existent-mortgages (i.e. originated by 2019Q4) at the end of 2020:Q1
 - \implies 26 private banks & 149,000 individuals.
- Match treatment information to other household borrowing during 2019Q4-2021Q4
 - 66,000 credit cards, 24,000 personal (short-term) loans and 4,100 car loans.

The Debt Moratorium Policy

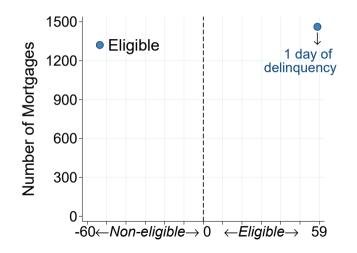
- Enacted in March 2020 \implies mitigate the effects of the COVID-19 Pandemic
- Treatment
 - 1. Duration \leq 120 days
 - 2. Grace periods on principal and interest payments
 - 3. Delinquency days reset
 - 4. Interest rate accrues \implies we will have a policy suggestion on this
 - 5. Credit rating remain frozen
- Eligibility: all loans with \leq 60 days past due as of 29/02/2020
 - First covid case: March 6th NO ANTICIPATION!!!
- \cdot Existent Mortgage \implies Eligible + apply for Debt Moratorium Policy \implies Treated


Empirical Strategy

Identification

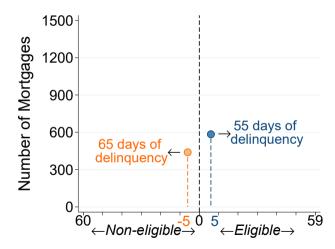
Identification (NElig-Elig.Distrib) (Pre-Treat.Distrib.) (Manipulation)

,


• Household "i" existent mortgage with bank "j" (i.e. originated by 2019Q4) \implies run_{ii} = 60 days - delinquency days_{ii}

Identification (NElig-Elig.Distrib) (Pre-Treat.Distrib.) (Manipulation

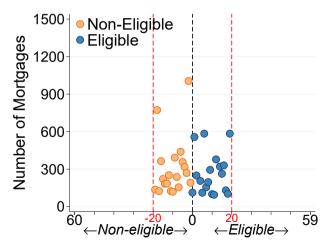
,


 \cdot Stressed households \Longrightarrow at least one day of delinquency on existent mortgage

Identification (NElig-Elig.Distrib) (Pre-Treat.Distrib.) (Manipulation)

,

• Eligible and Ineligible households within 5 days of the threshold.

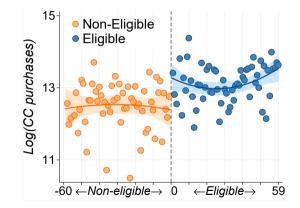


Identification (NElig-Elig.Distrib) (Pre-Treat.Distrib.) (Manipulation)

,

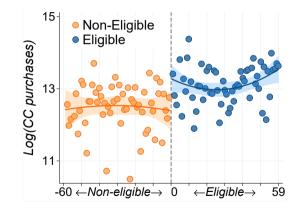
· **IDENTIFICATION** \implies compare barely eligible and non-eligible households

 \implies Non-parametric Local Polynomials (Calonico, Cattaneo, and Titiunik, 2014)



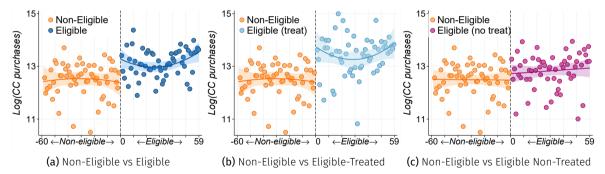
Empirical Strategy

RD Estimates: Household Consumption


Moratoria and CC Expenditures: RD Plots (new carloans) (new mortgages) (before p

• We proxy non-durable consumption by CC purchases.

Moratoria and CC Expenditures: RD Plots (new carloans) (new mortgages) (before pol


• Upward jump CC purchases when moving along the eligibility cutoff

Moratoria and CC Expenditures: RD Plots (new carloans) (new mortgages)

· Upward jump CC purchases when moving along the eligibility cutoff

 \implies Explained by Eligible-Treated households

Moratoria and CC Expenditures (ET (Ent NE) Manip. Donut Cutoffs (Pre-Trend I) (Pre-Trend II) (Particip. Dyn. Estim.

• Effect of moratoria on CC at end of the quarter of treatment (2020-Q2).

	CC Expe	enditure	Mortgage Payment	
	(log)	(COP)	(COP)	
Fuzzy-RD	2.10**	2.39*	-3.09***	
	(1.06)	(1.30)	(0.27)	
	First Stage			
D _{ij}	0.27***	0.27***	0.18***	
, 	(0.041)	(0.035)	(0.010)	
Observations	16,504	16,504	149,867	
Bandwidth (in days)	19.2	28.5	22.3	

Moratoria and CC Expenditures ET (Ent) NE (Manip. Donut Cutoffs (Pre-Trend I) (Pre-Trend II) (Pr

• Households receiving moratoria increase CC expenditure by 2.10 % relative to non-treated ones.

	CC Expenditure		Mortgage Payment	
	(log)	(COP)	(COP)	
Fuzzy-RD	2.10**	2.39*	-3.09***	
	(1.06)	(1.30)	(0.27)	
	First Stage			
D _{ij}	0.27***	0.27***	0.18***	
	(0.041)	(0.035)	(0.010)	
Observations	16,504	16,504	149,867	
Bandwidth (in days)	19.2	28.5	22.3	

Moratoria and CC Expenditures (ET (Ent NE) (Manip.) Donut (Cutoffs) (Pre-Trend I) (Pre-Trend I) (Pre-Trend I) (Pre-Trend II) (

- Better interpret magnitude of the effect, we estimate "MPC out of the moratoria"
 - Increase CC expenditure: 2.4 mill COP (\approx 625 USD)
 - Drop mortgage payments: 3.1 mill COP (\approx 805 USD)

	CC Expenditure		Mortgage Payment	
	(log)	(COP)	(COP)	
Fuzzy-RD	2.10**	2.39*	-3.09***	
	(1.06)	(1.30)	(0.27)	
	First Stage			
D _{ii}	0.27***	0.27***	0.18***	
, 	(0.041)	(0.035)	(0.010)	
Observations	16,504	16,504	149,867	
Bandwidth (in days)	19.2	28.5	22.3	

Moratoria and CC Expenditures ET Ent NE Manip. Donut Cutoffs Pre-Trend I Pre-Trend II Particip. Dyn. Estim

• Better interpret magnitude of the effect, we estimate "MPC out of the moratoria" Semi-elasticity from moratoria: $0.77 = \frac{2.4}{3.1}$ Elasticity from moratoria: $0.12 = 0.77 \times 0.16$

	CC Expenditure		Mortgage Payment	
	(log)	(COP)	(COP)	
Fuzzy-RD	2.10**	2.39*	-3.09***	
	(1.06)	(1.30)	(0.27)	
	First Stage			
D _{ij}	0.27***	0.27***	0.18***	
, 	(0.041)	(0.035)	(0.010)	
Observations	16,504	16,504	149,867	
Bandwidth (in days)	19.2	28.5	22.3	

Empirical Strategy

RD Estimates: Delinquency

Moratoria and Household Delinquency Mortgage deling dyn Other Loans deling dyn Mortgage debt dyn

• Effect of the moratoria on existent (old) household debt delinquency.

 $Delinquent_{ijt} = 1 \{ delinquency days_{ijt} \ge 30 \}$

	Existent Mortgages	Personal Loans	Car Loans	
Fuzzy-RD	-0.98** (0.07)	-0.09** (0.04)	-0.36** (0.18)	
	First Stage			
D _{ij}	0.21*** (0.02)	0.29*** (0.01)	0.18*** (0.06)	
Observations	152,879	28,158	4,187	
Bandwidth (in days)	8.2	28.7	22.8	

Moratoria and Household Delinquency Mortgage deling dyn Other Loans deling dyn Mortgage debt dyn

- Existent mortgages $\implies \downarrow$ delinquency probability:
 - 0.98 pp. in quarter of treatment \implies result of delinquency days reset.

	Existent	Personal	Car
	Mortgages	Loans	Loans
Fuzzy-RD	<mark>-0.98**</mark>	-0.09**	-0.36**
	(0.07)	(0.04)	(0.18)
	First Stage		
D _{ij}	0.21***	0.29***	0.18***
	(0.02)	(0.01)	(0.06)
Observations	152,879	28,158	4,187
Bandwidth (in days)	8.2	28.7	22.8

Moratoria and Household Delinquency Mortgage deling dyn Other Loans deling dyn Mortgage debt dyn Other Debt dyn

- · Cross-loan effect $\implies \downarrow$ delinquency probability
 - 0.09 pp. and 0.36 pp. for personal and car loans in quarter of treatment.
 - Moratoria mitigate households liquidity problems \implies repay debt.

	Existent	Personal	Car
	Mortgages	Loans	Loans
Fuzzy-RD	-0.98**	-0.09**	-0.36**
	(0.07)	(0.04)	(0.18)
	First Stage		
D _{ij}	0.21***	0.29***	0.18***
	(0.02)	(0.01)	(0.06)
Observations	152,879	28,158	4,187
Bandwidth (in days)	8.2	28.7	22.8

Why do we need a model?

- Identification of causal effect with Fuzzy RD is plausible. Results show clear causal relationship.
- RD design generally pick up local effects (LATE), external validity is a typical concern.
- The quantitative model capture general equilibrium effects of moratoria on households.
 - Benefits/Costs for financial system.
 - Long run implications.
 - Welfare gains of alternative debt relief policies.

Quantitative Model

Model

Setup

- Benchmark model: Arslan, Guler, Kuruscu (2023)
- Five sectors: households, banks, rental companies, firms, and government.
- Household heterogeneity in income, wealth, housing tenure and mortgage debt due to idiosyncratic shocks. But no aggregate uncertainty
- We study the effects moratoria in response to unexpected and persistent shock, but perfect foresight is assumed along transition.

About Households

- All born as young individuals with endogenous inherited wealth, draw their initial labor productivity (*z*)
- Two idiosyncratic shocks
 - Age: determines transition through life-cycle phases (young, middle, and old) according to $\pi_{\mathbb{Z}}(j'|j)$. Old individuals die after age shock, net wealth equally distributed among the newborns.
 - Labor efficiency: affect productivity before retirement, stochastic component $z_i \sim AR(1)$.
- Once shocks is observed, households decide housing tenure, saving and consumption.

About Households

- All born as young individuals with endogenous inherited wealth, draw their initial labor productivity (*z*)
- Two idiosyncratic shocks age and labor efficiency.
- Once shocks is observed, households decide housing tenure, saving and consumption.
 - House purchase financed with mortgages (long-term perpetuities with decreasing coupons).
 - If moratoria starts at t + 1, unpaid coupon is paid (with interest) when payment suspension is over.

- Households start active renters with state $\{a, z, j\}$
- Choices are: (i) stay as renters (V^{rr}) or (i) become homeowners (V^{rh})

$$V^r = \max\left\{V^{rr}, V^{rh}
ight\}$$

• Households start active renters with state $\{a, z, j\} \implies$ if continue renting

$$V^{rr}(a, z, j) = \max_{c, s, a' \ge 0} \{ u(c, s) + \beta E V^{r}(a', z', j') \}$$

subject to

$$c + a' + p_r s = w(1 - \tau)y(j, z) + a(1 + r_k)$$

• Households start active renters with state $\{a, z, j\} \implies$ if purchase a house

$$V^{rh}(a, z, j) = \max_{c, d, h, a' \ge 0} \left\{ u(c, h) + \beta E V^{h}(a', z', j', d, h) \right\}$$

subject to

$$c + p_h h + \delta_h p_h h + \varphi_f + a' = w(1 - \tau) y(j, z) + a(1 + r_k) + d(q^m(a', z, j, d, h) - \varphi_m)$$

$$d \leq p_h h(1 - \phi)$$

- Only mortgage pricing is affected by individual default risk.
 - repayment: $m = d(r_l + \delta_m)$
 - debt next period: $d' = (d m)(1 + r_l)$

- \cdot Once a households is a homeowner, then has four options
 - 1. Stays as a homeowner Details
 - 2. Refinance mortgage (subject to mortgage origination cost) Details
 - 3. Sell house (subject to transaction cost) Details
 - 4. Defaults Details and becomes inactive renter Details
- Refinancing or selling the house requires full prepayment of mortgage

• Perfectly competitive risk averse banks. They borrow from the international market (r_t) and lend to households (long-term mortgages) and firms (short-term working capital)

$$\max_{L_{t+1},B_{t+1}}\sum_{t=0}^{\infty}\beta_{L}^{t-1}\log\left(\boldsymbol{d}_{t}^{B}\right)$$

subject to

$$d_t^B + L_{t+1} = \omega_t + B_{t+1}$$

$$\omega_{t+1} = L_{t+1} (1 + r_{\ell,t+1}) - B_{t+1} (1 + r_{t+1})$$

 L_t Total lending to firms and households \implies Banks make same return on each loan

- Banks don't face aggregate risk
- Law of large numbers apply for households

• Perfectly competitive risk averse banks.

$$\max_{L_{t+1},B_{t+1}}\sum_{t=0}^{\infty}\beta_{L}^{t-1}\log\left(d_{t}^{B}\right)$$

subject to

$$d_t^{B} + L_{t+1} = \omega_t + B_{t+1}$$

$$\omega_{t+1} = L_{t+1} (1 + r_{\ell,t+1}) - B_{t+1} (1 + r_{t+1})$$

$$(1 - \phi_{t+1}) (1 + r_{\ell,t+1}) L_{t+1} \ge (1 + r_{t+1}) B_{t+1}$$

Endogenous leverage constraint

- Banks can default and steal fraction of assets (Gertler and Kiyotaki, 2010)

$$\phi_t = \xi^{1-\beta_L} \left((1+r_{t+1}) / (1+r_{\ell,t+1}) - (1-\phi_{t+1}) \right)^{\beta_L}$$

Quantitative Model

Model Results

• Model is calibrated to Colombia targeting the averages of 2010 to 2019.

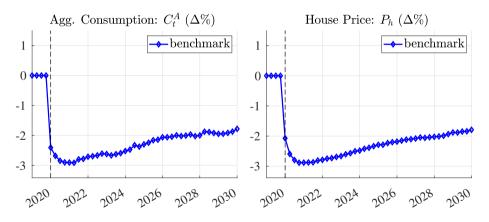
Statistic	Data	Model
Capital- quarterly GDP ratio	8	8
Homeownership rate–aggregate	43%	43%
Mortgage debt to quarterly GDP ratio	112%	112%
Share of housing services in GDP	15%	15%
House price- quarterly rental price ratio	30	30
loan-to-value ratio	70%	70%
Bank leverage ratio	10	10
Lending premium	0.375%	0.375%

- Evaluate the impact of an aggregate productivity shock with moratoria policy in place.
 - (1) Economy starts is in steady state before shock.
 - (2) Productivity shock replicates output drop around COVID.
 - (3) Perfect foresight after the shock hits the economy.
 - (4) No mortgage payments for 2 quarters $\implies m = 0$ but interest accrues $\implies d' = d (1 + r_l)$.

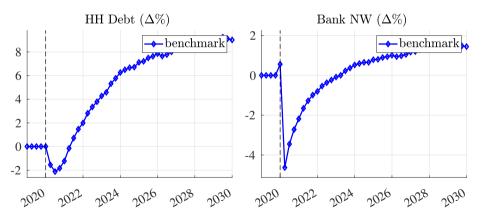
Linking the model to RDD

- \cdot Evaluate if quantitative model aligns with the empirical estimates. \Longrightarrow PE response
 - Fix wages, lending rate, house prices, rental prices
 - Compute average consumption elasticity at the end of the second quarter relative to economy with no moratoria.

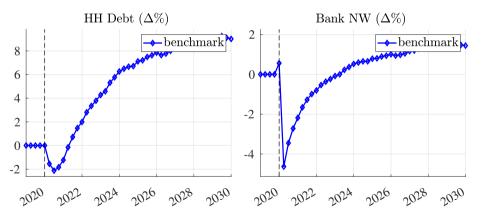
Linking the model to RDD


- \cdot Evaluate if quantitative model aligns with the empirical estimates \Longrightarrow PE response
 - Fix wages, lending rate, house prices, rental prices
 - Compute average consumption elasticity at the end of the second quarter relative to economy with no moratoria.
- Consumption elasticity in the model is for universe of mortgage holders.
- Model matches a similar consumption elasticity that in data.

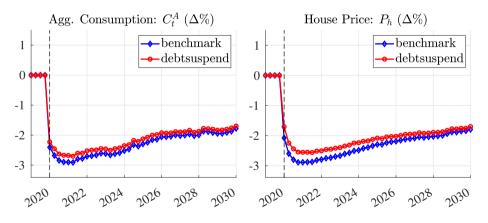
 \implies Average of data estimates for stressed and non-stressed households.


Aggregate impact of debt moratoria

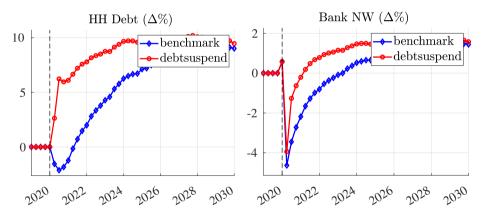
- Turn on GE effect on prices to explore the long-run impacts.
- Compare economy transition path to same productivity shock in absence of moratoria.


- Aggregate impact without moratoria
 - $-\downarrow$ labor income (20% on impact) $\Longrightarrow \downarrow$ consumption and house prices

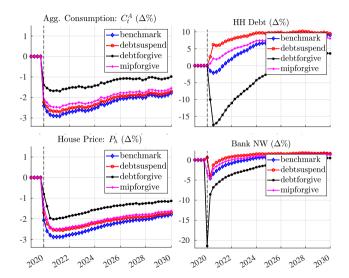
- Aggregate impact without moratoria
 - In short-run: \downarrow house prices $\Longrightarrow \downarrow$ household debt.
 - In the medium-run: house prices and income growth $\implies \uparrow$ household debt



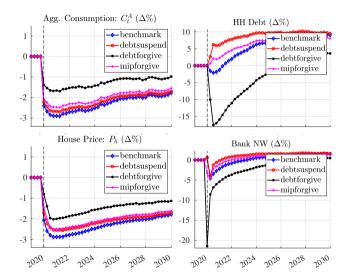
- Aggregate impact without moratoria
 - − On impact: \downarrow lending \implies \uparrow valuation of existing mortgages \implies \uparrow bank net worth.
 - $-\downarrow$ assets liquidation value (prepay mortgages) $\Longrightarrow \downarrow$ bank net worth.


Aggregate impact with moratoria All Other Moratoria length Decomposition

- Consumption and welfare (\approx 7%).
- Housing prices (18%)


Aggregate impact with moratoria All Other Moratoria length Decomposition

- liquidation value and \uparrow mortgage debt $\Longrightarrow \uparrow$ banks profitability in the long run.


Policy Comparison 🔊

• Compare alternative debt relief policies

Policy Comparison 🔊

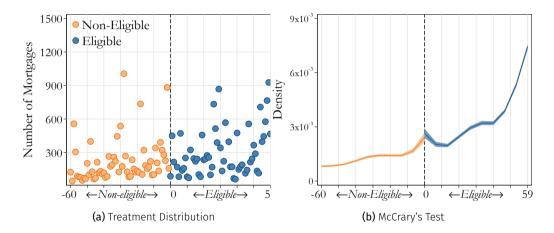
• Moratoria + no interests accrued \implies welfare improving and beneficial for banks.

19/20

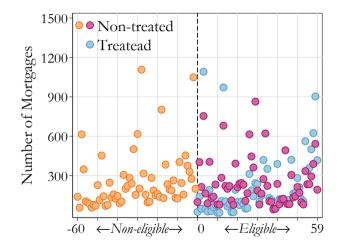
Conclusions

- This paper study implications of temporary payment debt suspension for households.
- Empirical strategy \implies LATE on stressed households
 - Exploit discontinuity in eligibility for Colombia debt moratoria policy.
 - Higher consumption \implies credit card purchases.
 - Drop in delinquency rates on existent mortgages and other household debt.
- \cdot Quantative model \implies PE consumption response replicate empirical estimates.
 - Moratoria mitigates the negative response of the economy to an aggregate productivity shock.
 - Long-term effects of the policy is beneficial for banks.
 - Larger welfare gains if policy stipulate debt forgiveness or moratoria with interest rate not accrued.

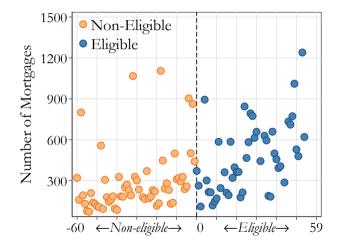
THANK YOU!!!


APPENDIX

Related Literature (back)

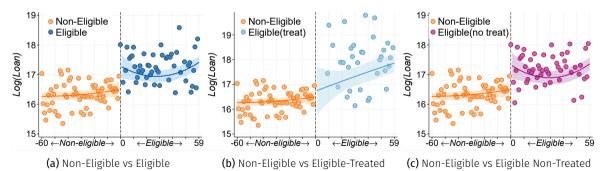

- · Impact of debt relief on financial distress on households
 - Dobbie and Song (2015) (consumer bankruptcy protection), Campbell et al.(2021)
 (mortgage design and maturity extension), Ganong and Noel (2020) (mortgage modifications), Dinerstein et al. (2024) (student loan moratoria)
- \cdot Quantitative models with long-term debt and default
 - Hatchondo et al. (2022) (contingent convertible bonds and sovereign default), Önder et al. (2023) (corporate debt moratoria)

Testing Manipulation **Deck**


• Reject manipulation of the running variable (p-value=0.25)

Treated and non-Treated Mortgages (back)

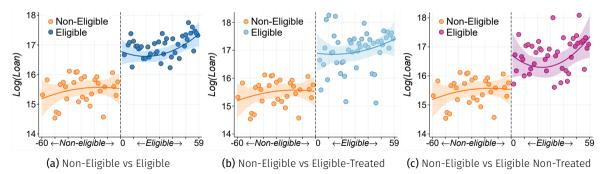
Pre-treatment distribution of loans (back)


Treatment Biting: Existing Mortgages 2020q2

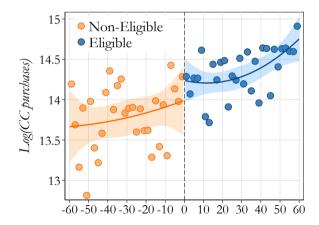
	During qu	arter of trea	tment	One quarter after treatment			
	Log(payment)	Delinq. (days)	Maturity (months)	Log(payment)	Delinq. (days)	Maturity (months)	
Sharp-RD	-40.20***	-55.50***	0.76	6.69	-17.04***	1.51***	
	(2.0)	(3.2)	(0.5)	(8.0)	(5.1)	(0.3)	
Observations	138,150	109,445	122,786	108,446	108,446	108,446	
BW loc. poly.	9.5	17.0	30.0	21.9	24.2	46.4	

Moratoria and New Mortgages 🔤

Log(new mortgage_{ijt})


new mortgage_{*ijt*} = value of loan_{*ij*} at quarter of origination t_0

Moratoria and New Car Loans 🔤


· Log(new car loan_{ijt})

new car loan_{ijt} = value of loan_{ij} at quarter of origination t_0

Pre-existing differences in Household Consumption 🔤

- One quarter before the implementation of the policy (i.e., 2019Q4)
 - \implies Observed jump in CC purchases around cutoff disappears

Moratoria and Durable Consumption **back**

• Durable Consumption: Log(new mortgage_{iit}), Log(new car loan_{iit})

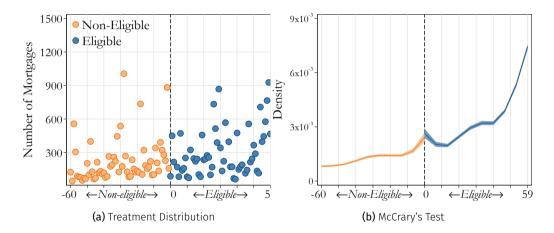
new mortgage_{ijt} (new car loan_{ijt}) = value of loan_{ij} at quarter of origination t_0

New Cars	New Mortgages		
6.67**	3.78*		
(0.6)	(2.2)		
First Stage			
0.14**	0.05**		
(0.05)	(0.02)		
4,407	8,846		
22.8	17.0		
	6.67** (0.6) 0.14** (0.05) 4,407		

Summary Statistics: Treated Households (back)

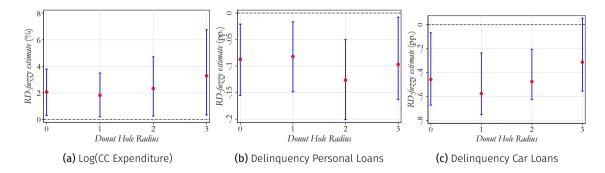
	Mean	SD	P25	P50	P75	N _{obs}
CC Purchases	2.0	4.1	0.2	0.7	2.0	10,379
CC purchases growth	4.8	101.2	-40.2	16.9	67.9	7,534
Existent Mortgages						
Repayment	0.8	1.1	0.0	0.5	1.2	76,343
Delinquency probability	4.9	21.6	0.0	0.0	0.0	79,228
Outstanding debt	51.7	49.0	20.6	38.2	64.2	76,629
Interest rate	10.5	2.7	9.0	10.7	12.5	77,895
Maturity	10.7	5.9	6.1	10.2	14.7	79,158
LTV	37.2	18.1	22.8	37.1	51.4	79,228
Rating	4.9	0.4	5.0	5.0	5.0	79,183
Personal Loans						
Delinguency probability	5.0	21.8	0.0	0.0	0.0	17,001
Outstanding debt	5.0	7.4	1.0	2.4	5.4	16,126
Interest rate	22.9	7.9	23.7	27.1	27.2	16,797
Maturity	7.2	8.9	2.9	4.3	5.0	16,853
Rating	4.7	0.9	5.0	5.0	5.0	17,001
Car Loans						
Delinguency probability	17.7	38.2	0.0	0.0	0.0	2,082
Outstanding debt	28.6	26.1	11.1	22.1	37.2	2,048
Interest rate	12.3	6.4	10.3	13.0	15.9	1,990
Maturity	3.2	1.8	1.7	3.3	4.5	2,053
Rating	4.3	1.3	5.0	5.0	5.0	2,082

Summary Statistics: Eligible Non-Treated Households (back)


	Mean	SD	P25	P50	P75	N _{obs}
CC Purchases	2.3	4.3	0.2	0.8	2.4	4,035
CC purchases growth	-1.4	195.0	-36.1	26.1	77.3	3,043
Existent Mortgages						
Repayment	1.4	1.6	0.5	1.0	1.8	27,597
Delinguency probability	43.9	49.6	0.0	0.0	100.0	32,606
Outstanding debt	50.4	54.8	16.6	33.9	62.6	32,000
Interest rate	10.8	2.7	9.5	10.7	12.7	31,823
Maturity	9.3	5.7	4.8	8.7	13.1	32,334
LTV	32.5	18.5	17.5	31.9	46.5	32,605
Rating	4.4	0.9	4.0	5.0	5.0	32,536
Personal Loans						
Delinguency probability	8.7	28.2	0.0	0.0	0.0	7,174
Outstanding debt	5.0	7.4	1.1	2.4	5.4	6,414
Interest rate	23.3	7.6	24.3	27.1	27.2	7,040
Maturity	7.1	9.1	2.7	4.2	5.0	7,097
Rating	4.6	1.1	5.0	5.0	5.0	7,174
Car Loans		-				
Delinguency probability	31.8	46.6	0.0	0.0	100.0	1,484
Outstanding debt	25.6	27.1	5.9	18.3	35.2	1,464
Interest rate	12.7	5.7	10.7	13.2	15.7	1,448
Maturity	2.7	1.8	1.0	2.6	4.2	1,231
Rating	3.6	1.8	2.0	2.0 5.0	4.2 5.0	1,447
Nating	5.0	1.0	2.0	5.0	5.0	1,404

Summary Statistics: Non-Eligible Households (back)

	Mean	SD	P25	P50	P75	N _{obs}
CC Purchases	1.3	3.1	0.1	0.4	1.2	1,992
CC purchases growth	-63.7	245.3	-96.3	-25.3	34.1	1,522
Existent Mortgages						
Repayment	1.6	2.4	0.3	0.9	1.9	19,982
Delinquency probability	94.8	22.2	100.0	100.0	100.0	41,045
Outstanding debt	53.1	58.0	18.3	35.2	64.1	40,702
Interest rate	11.1	3.1	9.5	11.1	13.0	40,831
Maturity	9.7	5.8	5.2	8.9	13.8	40,621
LTV	35.3	17.1	21.6	35.8	48.5	41,045
Rating	3.4	1.0	3.0	3.0	4.0	12,150
Personal Loans						
Delinguency probability	27.9	44.9	0.0	0.0	100.0	3,983
Outstanding debt	4.7	7.0	1.1	2.3	5.0	3,766
Interest rate	24.7	6.4	25.9	27.2	27.2	3,870
Maturity	9.1	11.3	2.1	3.9	5.6	3,903
Rating	3.5	1.8	1.0	5.0	5.0	3,983
Car Loans						
Delinguency probability	81.6	38.7	100.0	100.0	100.0	621
Outstanding debt	22.5	24.2	4.3	16.0	30.4	609
Interest rate	15.1	6.1	11.8	14.6	18.1	459
Maturity	2.4	1.8	0.9	2.0	3.6	594
Rating	1.7	1.1	1.0	1.0	2.0	621


Testing Manipulation **Deck**

• Reject manipulation of the running variable (p-value=0.25)

Donut-hole Test Dack

- · Test checks for additional "bunching" of observations around the cutoff
- Most estimates are robust to excluding 1, 2, and 3 days before/after the cutoff

Placebo Cutoffs (back)

- What if move the cutoff for delinquency days?
- no effects on placebo cutoffs

Testing for Pre-Policy Differences I (back)

Variable	RD	Robu	st Inference	Bandwidth	Observations
vanable	Estimator	p-value	95 % Conf. Int.	· (in days)	
<i>Credit Cards</i> Log(Expenditure) Delinquency Prob. Log(Outstanding Debt) Interest Rate	-0.68 -0.05 -0.14 0.04	0.71 0.11 0.68 0.85	[-3.70, 2.35] [-0.11, 0.00] [-0.67, 0.40] [-0.29, 0.37]	49.56 20.71 32.91 18.33	17,252 58,303 53,469 66,581
Existing Mortgages Repayment Delinquency Prob. Log(Outstanding Debt) Interest Rate Maturity LTV Rating	-0.06 -0.05 -0.17 -0.30 -0.98 -1.45 0.20	0.71 0.52 0.28 0.52 0.29 0.64 0.17	[-0.32, 0.20] [-0.19, 0.08] [-0.44, 0.09] [-1.07, 0.47] [-2.49, 0.53] [-6.52, 3.62] [-0.04, 0.44]	30.84 14.81 24.57 48.99 52.19 24.28 8.83	149,556 119,817 152,734 155,970 155,551 155,985 119,802

Testing for Pre-Policy Differences II (back)

Variable	RD	Rob	ust Inference	Bandwidth	Observations
vanable	Estimator	p-value	95 % Conf. Int.	in days)	
Personal Loans					
Delinquency Prob.	-0.02	0.50	[-0.08, 0.03]	30.34	27,158
Log(Outstanding Debt)	0.05	0.83	[-0.36, 0.47]	27.87	24,971
Interest Rate	0.08	0.92	[-1.33, 1.49]	19.02	26,830
Maturity	-0.36	0.35	[-0.99, 0.27]	35.76	26,522
Rating	0.24	0.26	[-0.11, 0.59]	40.45	27,158
Car Loans					
Delinquency Prob.	-0.11	0.63	[-0.49, 0.27]	38.28	5,489
Log(Outstanding Debt)	-1.57	0.19	[-3.52,0.38]	27.07	5,362
Interest Rate	0.55	0.65	[-1.44, 2.53]	33.36	4,878
Maturity	-0.22	0.80	[-1.63, 1.20]	35.12	5,379
LTV	5.15	0.58	[-10.19, 20.49]	33.94	5,489
Rating	0.52	0.09	[0.02, 1.02]	30.50	5,489

(Un)-Predictability of Treatment (back

- Check which mortgage characteristics explain treatment status
- Only running variable explain treatment choice consistently.

	Entire sample	BW=40	BW=30	BW=25	BW=15
Running	0.0021***	0.0090***	0.0087***	0.011***	0.012***
-	(0.0001)	(0.00005)	(0.0001)	(0.0001)	(0.0004)
Oustanding Debt	0.41***	0.15***	0.21***	0.19	0.13
	(0.041)	(0.042)	(0.071)	(0.123)	(0.108)
Expected Payment	-1.14e-08***	0.0012***	0.00015	0.00023	0.00072
	(0.000)	(0.0002)	(0.0003)	(0.0003)	(0.0006)
Maturity	-0.0001	-0.00006	0.0004	0.0004	0.0004
	(0.0002)	(0.0003)	(0.0004)	(0.0005)	(0.0005)
LTV	-1.9e-12***	-8.83e-07	1.05e-06	4.2e-06	7.9e-06
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Observations	822,876	28,513	20,289	14,916	10,348
R-squared	0.21	0.38	0.26	0.29	0.34

Dynamic Estimates: CC Expenditure (back)

- \cdot T \implies contemporaneous effect.
- T + $\tau \Longrightarrow$ effect τ quarters after receiving debt moratoria.
- $T + 2 \implies$ pre-policy differences.

	T-2	Т	T+1	T+2	T+3		
Fuzzy-RD	-1.07 (1.90)	2.10** (1.06)	4.24* (2.47)	0.66 (1.66)	-0.49 (2.63)		
	First Stage						
D _{ij}	0.26*** (0.029)	0.27*** (0.041)	0.29*** (0.042)	0.25*** (0.037)	0.28*** (0.033)		
All Observations	17,344	16,504	17,954	19,696	20,630		
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9		

Dynamic Estimates: CC Expenditure (back)

• No differences in CC purchases before policy implementation.

	T-2	Т	T+1	T+2	T+3
Fuzzy-RD	- 1.07 (1.90)	2.10** (1.06)	4.24* (2.47)	0.66 (1.66)	-0.49 (2.63)
		First	Stage		
D _{ij}	0.26*** (0.029)	0.27*** (0.041)	0.29*** (0.042)	0.25*** (0.037)	0.28*** (0.033)
All Observations	17,344	16,504	17,954	19,696	20,630
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9

Dynamic Estimates: CC Expenditure (back)

- Effect of moratorium on consumption disappears after two quarters. Treated households
 CC purchases:
 - 2.10% in quarter moratoria started.
 - 4.24% one quarter after. \implies liquidity mitigation + treatment timming and duration.

	T-2	Т	T+1	T+2	T+3
Fuzzy-RD	-1.07 (1.90)	<mark>2.10**</mark> (1.06)	<mark>4.24*</mark> (2.47)	0.66 (1.66)	-0.49 (2.63)
		First	Stage		
D _{ij}	0.26*** (0.029)	0.27*** (0.041)	0.29*** (0.042)	0.25*** (0.037)	0.28*** (0.033)
All Observations	17,344	16,504	17,954	19,696	20,630
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9

Moratoria and Mortgage Delinquency Dynamics 🔤

 $\cdot \downarrow \text{Delinquency}$ over next four quarters after treatment.

	T-1	T	T+1	T+2	T+3	T+4
	(1)	(2)	(3)	(4)	(5)	(6)
Fuzzy-RD	-0.05	<mark>-0.98***</mark>	-0.67***	-0.70***	-0.31***	- <mark>0.26***</mark>
	(0.08)	(0.07)	(0.1)	(0.04)	(0.05)	(0.06)
	First Stage					
D _{ij}	0.24***	0.21***	0.23***	0.22***	0.24***	0.25***
	(0.02)	(0.02)	(0.02)	(0.01)	(0.02)	(0.02)
Observations	119,981	152,879	147,628	143,105	138,268	102,596
Bandwidth (in days)	14.8	8.2	8.5	20.13	14.6	13.8

Moratoria and Delinquency Dynamics on Other Debt 🔤

• Only short term \downarrow delinquency probability for other household debt.

	T-1	Т	T+1	T+2	T+3	T+4	
	(1)	(2)	(3)	(4)	(5)	(6)	
(A) Personal Loans							
Fuzzy-RD	-0.02	-0.09**	-0.16***	-0.09	0.03	-0.09	
	(0.03)	(0.04)	(0.06)	(0.06)	(0.05)	(0.06)	
Observations	27,158	28,158	29,348	31,134	32,823	34,783	
(B) Car Loans							
Fuzzy-RD	-0.11	-0.36**	0.13	0.24	0.21	0.27	
	(0.23)	(0.18)	(0.26)	(0.18)	(0.19)	(0.51)	
Observations	5,489	4,187	4,110	4237	4,335	4,702	

Moratoria and Mortgage Debt Dynamics 🔤

- \cdot Existent Mortgage debt \Longrightarrow Log (Outstanding Balance_{it})
 - Financial burden doesn't increase in quarter of treatment.
 - $-\downarrow$ Mortgage debt four quarters after treatment (due to \downarrow delinquency)

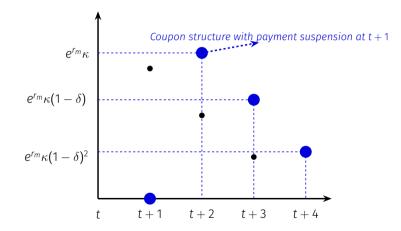
	T-1	T	T+1	T+2	T+3	T+4	
	(1)	(2)	(3)	(4)	(5)	(6)	
Fuzzy-RD	-0.17	<mark>-0.16</mark>	-0.19	-0.17	-0.15	- <mark>0.22**</mark>	
	(0.16)	(0.16)	(0.16)	(0.13)	(0.14)	(0.11)	
		First Stage					
<i>D</i> _{<i>i</i>,<i>j</i>}	0.21***	0.21***	0.21***	0.21***	0.21***	0.24***	
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)	
Observations	152,734	149,383	144,872	140,284	135,606	100,420	
Bandwidth (in days)	24.6	23.7	22.6	20.8	20.4	18.6	

Moratoria and Dynamics on Other Debt Gack

• Household debt on personal loans and car loans \implies Log (Outstanding Balance_{it})

	T-1	T+1	T+1	T+2	T+3	T+4	
	(1)	(2)	(3)	(4)	(5)	(6)	
		(A) Pers	onal Loan	S			
Fuzzy-RD	0.06	-0.52*	-0.58**	-0.09	-0.06	-0.35	
	(0.25)	(0.29)	(0.27)	(0.34)	(0.39)	(0.31)	
Observations	24,971	25,897	26,306	26,964	27,557	28,278	
(B) Car Loans							
Fuzzy-RD	-1.60	-2.7**	-2.4***	-0.77	0.94	0.92	
	(0.77)	(1.22)	(0.91)	(0.86)	(1.10)	(1.12)	
Observations	5,362	4,105	4,006	4,141	4,235	1,837	

Moratoria and Dynamics on Other Debt Gack


- ↓ **Outstanding debt** on personal loans and car loans:
 - Quarter of treatment: 0.52% and 2.7%.
 - One quarter after treatment: 0.58% and 2.4%.

	T-1	Т	T+1	T+2	T+3	T+4	
	(1)	(2)	(3)	(4)	(5)	(6)	
(A) Personal Loans							
Fuzzy-RD	0.06	-0.52*	-0.58**	-0.09	-0.06	-0.35	
	(0.25)	(0.29)	(0.27)	(0.34)	(0.39)	(0.31)	
Observations	24,971	25,897	26,306	26,964	27,557	28,278	
(B) Car Loans							
Fuzzy-RD	-1.60	-2.7**	-2.4***	-0.77	0.94	0.92	
	(0.77)	(1.22)	(0.91)	(0.86)	(1.10)	(1.12)	
Observations	5,362	4,105	4,006	4,141	4,235	1,837	

	Δ Profit	Δ Equity	Δ Assets	ΔLiab.
Bartik-IV	0.46** (0.038)	0.21*** (0.18)	0.37*** (0.021)	0.06 (0.16)
			Stage	
B _{jt}	0.98*** (0.192)	0.98*** (0.192)	0.98*** (0.192)	0.98*** (0.192)
F-first stage	26.06	26.06	26.06	26.06
Observations	200	200	200	200
Bank fixed effects Time-quarter fixed effects	\checkmark	\checkmark	\checkmark	\checkmark

Mortgages with moratoria **back**

• Coupon structure of a **non-contingent bond** issued at t:

• If remains homeowner

$$V^{hh}(a, h, d, z, j) = \max_{c, a' \ge 0} \left\{ u(c, h) + \beta E V^{h}(a', z', j', h, d) \right\}$$

subject to

$$c + \delta_h p_h h + a' + m = w (1 - \tau) y (j, z) + a (1 + r_k)$$

$$d' = (d - m) (1 + r_l),$$

 \cdot If decide to refinance \Longrightarrow pay balance and get a new mortgage

$$V^{hf}(a, h, d, z, j) = \max_{c, d', a'} \left\{ u(c, h) + \beta E V^{h}(a', z', j', h, d'') \right\}$$

subject to

$$c + d + p_h h + \delta_h p_h h + \varphi_f + a' = w (1 - \tau) y(j, z) + a (1 + r_k) + d' (q^m (a', z, j, d, h) - \varphi_m) d' \leq p_h h (1 - \phi)$$

• If sell house (rent or buy new house) \implies identical to a renter's problem

$$V^{hr}(a,h,d,z,j) = V^{rr}(a+p_hh(1-\varphi_s)-d,z,j)$$

• If default

$$V^{he}(a,d,z,j) = \max_{c,s,a' \ge 0} \left\{ u(c,s) + \beta_i E\left[\pi V^r(a',z',j') + (1-\pi) V^i(a',z',j')\right] \right\}$$
(1)

subject to

$$c + a' + p_r s = a(1 + r_k) + w(1 - \tau) y(j, z) + \max\{(1 - \varphi_e) p_h h - d, 0\}.$$

$$V^{i}(a, z, j) = \max_{c, s, a'} \left\{ u(c, s) + \beta \left[\pi E V^{r}(a', z', j') + (1 - \pi) E V^{i}(a', z', j') \right] \right\}$$

subject to

$$c + a' + p_r s = w(1 - \tau) y(j, z) + a(1 + r_k)$$

• Perfectly competitive firm produces final output

$$\max_{K_{t},N_{t},u_{t}} \mathbb{Z}_{t} K_{t}^{\alpha} \left(N_{t} u_{t}\right)^{1-\alpha} - (r_{k,t} + \delta_{k}) K_{t} - \left(1 + \zeta r_{l,t+1}\right) w_{t} N_{t}$$

• Wage per efficiency of labor (w_t) is defined as:

Rental companies back HH back Banks

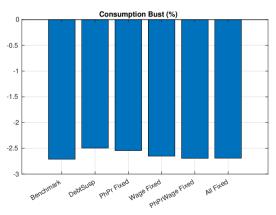
• Own the rental housing units by buying and selling from households and from each other.

$$(1+r_k) V^{rc}(H_r) = \max_{H_r} \left\{ \left(p^r - \kappa - p^h \right) H_r' + (1-\delta_h) H_r + \eta \frac{(H_r - H_r')^2}{2} + V^{rc}(H_r') \right\}$$

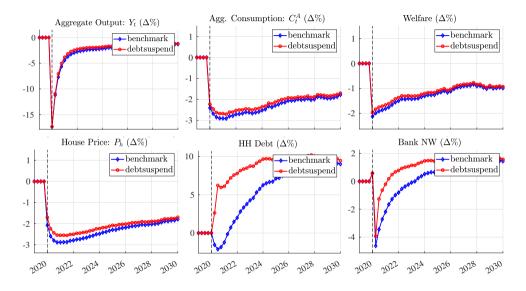
• In equilibrium rate of return equal to the rate of return on capital

$$p_{r} = \kappa + p_{h} + \eta p_{h} (H'_{r} - H_{r}) - \frac{(1 - \delta_{h} + \eta (H''_{r} - H'_{r})) p'_{h}}{1 + r_{k}}$$

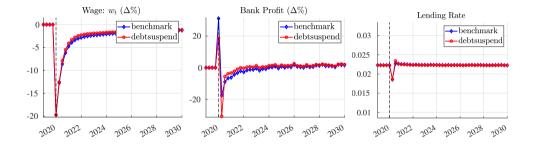
Externally Set Parameters (back)


Parameter	Explanation	Value
σ	risk aversion	2
α	capital share	0.4
$ ho_{arepsilon}$	annual persistence of income	0.96
σ_{ε}	annual std of innovation to AR(1)	0.19
$arphi_h$	selling cost for a household	7%
φ_e	selling cost for foreclosures	25%
φ_f	fixed cost of mortgage origination	8%
φ_m	variable cost of mortgage origination	0.75
δ_h	annual housing depreciation rate	2.5%
π	quarterly prob. of being an active renter	3.6%
Ĥ	housing supply	1
ψ	wage curvature	3
ϕ	down payment requirement	0.3
ζ	share of wage bill financed	100%
δ_k	quarterly capital depreciation rate	2.5%
δ_m	quarterly mortgage depreciation rate	2.5%

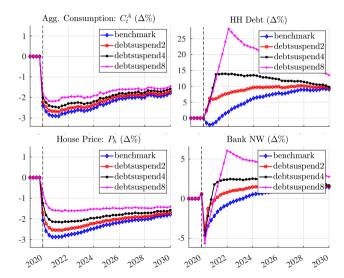
Internally Calibrated Parameters (back)


Parameter	Explanation	Value
eta	discount factor	0.96
<u>h</u>	minimum house size	0.89
r	bank borrowing rate	1.5%
γ	weight of housing services in utility	0.19
κ	rental maintenance cost	0.06
θ	wage parameter	2.36
ξ	bank seizure rate	0.2
β_L	bank discount factor	0.95

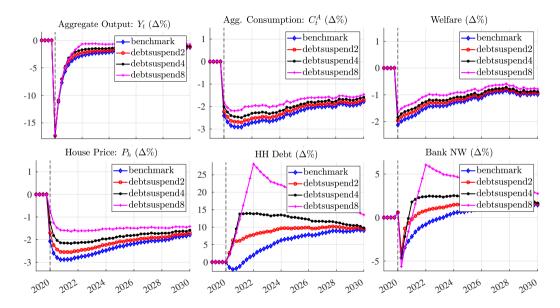
Decomposition of the Debt Suspension Policy (back)


- Decompose change in consumption after two quarters into components.
- Indirect effect explains most of the consumption response.
- Direct effect is about 10%

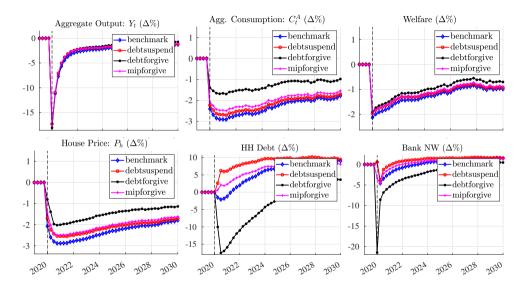
Aggregate Effect: all aggregate variables 🔤



Introducing Moratoria: Other Outcomes 🔤



Comparing Length of Moratoria 💷 🔤


· Gains increase with length of payment suspension to households

Comparing Length of Moratoria **back**

Policy Comparison (back)

