Debt Moratorium and Macroeconomics

Yasin Kürşat ÖnderMauricio VillamizarJose VillegasGhent UniversityCentral Bank of ColombiaGhent University

August 3rdrd 2024

International Conference on Empirical Economics 2024, PSU Altoona

Motivation, why is it important?

- Debt moratorium: payment suspension of a debt instrument.
- One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." –Qur'an
 2:280
- A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions.

Motivation, why is it important?

- · Debt moratorium: payment suspension of a debt instrument.
- One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." –Qur'an
 2:280
- A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions.

Motivation, why is it important?

- · Debt moratorium: payment suspension of a debt instrument.
- One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." –Qur'an
 2:280
- A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions.

Moratorium policies (Covid-19)

- Moratorium policies gained prominence in the wake of the 2020 pandemic.
- Following the success the policy, EU banks offer payment holidays to clients in trouble.

Moratorium policies (Covid-19)

• **DEBT MORATORIA** remains largely unexplored in both empirical and theoretical contexts.

Two main contributions:

- 1. (Empirical) Establish the causal link of moratorium on firms.
 - Focus on Colombian moratorium of 2020. Use credit registry data and balance-sheet information firms.
 - Estimate the causal impact of moratoria on new loans and real outcomes.
 - stressed: Regression discontinuity exploiting eligibility conditions to get moratoria.
 - non-stressed: Difference-in-Difference.
- 2. (Quantitative) Study the aggregate long-term implications of moratorium policy.
 - General equilibrium default model (Mendoza and Yue, 2012) with **moratorium loans** for firms (Hatchondo et al., 2022).

What we find?

- 1. Moratoria improve economic conditions for stressed firms.
 - new loans: ↑ loan amount (extensive and margin), ↓ interest rate, and ↓ default probability.
 - real outcomes: ↑ employment, ↑ operating revenues, and ↑ investment.
- 2. Moratoria mitigates the negative response of the economy caused by liquidity shocks.
 - Welfare improving: \downarrow number of firms that default, but \uparrow default risk (moratoria debt).
 - Welfare gains increase: policy combining payment suspension with interest not accruing.

Empirical Strategy

Empirical Strategy

The Colombian Case

Data

- Colombian credit registry from Q1-2018 to Q4-2021.
 - Quarterly loan level data.
 - Information on loans (bank-firm pairs): issuance date, outstanding balance, interest rate, maturity, delinquency days, credit rating, collateral.
 - We can identify corporate loans treated by moratoria in 2020.
- We employ 50,152 existent-loans (i.e. originated by 2019Q4) at the end of 2020:Q1

 \implies 37 private banks & 23,932 stressed firms.

• Match treatment information to new corporate loans and firms balance sheet during 2020Q2-2021Q4.

The Debt Moratorium Policy

- \cdot Enacted in March 2020 \Longrightarrow mitigate the effects of the COVID-19 Pandemic
- Treatment
 - 1. Duration \leq 120 days
 - 2. Grace periods on principal and interest payments
 - 3. Interest rate accrues
 - 4. Delinquency days reset
 - 5. Credit rating remain frozen
- Eligibility: any loan with \leq 60 days past due as of 29/02/2020
 - First covid case: March 6th NO ANTICIPATION!!!

Empirical Strategy

Identification Stressed Firms

Identification Stressed Firms NElig-Elig.Distrib Pre-Treat.Distrib. (manipulation

• Existent loan of firm "i" with bank "j" (i.e. originated by 2019Q4)

 \implies run_{ij} = 60 days – delinquency days_{ij}

Identification Stressed Firms NElig-Elig.Distrib Pre-Treat.Distrib. (manipulation

 \cdot Stressed firms \Longrightarrow at least one day of delinquency on existent mortgage

Identification Stressed Firms NElig-Elig.Distrib Pre-Treat.Distrib. manipulation

• Eligible and Ineligible firms within 9 days of the threshold.

Identification Stressed Firms NElig-Elig.Distrib Pre-Treat.Distrib. (manipulation

· **IDENTIFICATION** \implies compare barely eligible and non-eligible firms

 \implies Non-parametric Local Polynomial Approach (Calonico et al. (2014))

Empirical Strategy

Effect of Moratoria on Existent Loans

About moratoria treatment (RD estimates

• What happen with stressed firms receiving a moratoria on existent loan?

About moratoria treatment (RD estimates)

- Our data confirms that policy worked as intended.
 - Payment suspension: loan payments reduced 90%.
 - Delinquency days reset: delinquency reduce by 108 days.

Empirical Strategy

Stressed Firms and Moratoria: New Loan Conditions

Moratoria and Loans Conditions: RD plots

• New loans after receiving moratoria and up to a year policy ended.

\implies Future access to credit

- Loan amount and interest rate.
- $-\,$ Ex-ante default (bank assigned at origination), ex-post default (payment delayed \leq 30 days).
- Other credit conditions: maturity, collateral, credit rating.

Moratoria and Loans Conditions: RD plots

• New loans after receiving moratoria and up to a year policy ended:

 \implies Loan amount and interest rate.

Moratoria and Loans Conditions: RD plots

- · Improve credit access for stressed firms after receiving moratoria
 - loan amount increase 16%.
 - interest rate reduce 35 basis points.

Moratoria and Loans Conditions: RD Estimates

- Conditions on new credits change in other dimensions.
 - Higher probability of getting new loan (extensive margin).
 - Reduce default risk of firms.

	Intensive	Extensive	Interest	Maturity	Collateral	Rating	Default Prob.	
	Log(Loan)	1 {loan}	meerese	Maturity			Ex-ante	Ex-post
Fuzzy-RD	16.44***	1.04*	-0.35***	5.59*	1.10***	4.07*	-1.17*	-2.32***
	(4.8)	(0.6)	(0.1)	(2.9)	(0.6)	(2.2)	(0.7)	(0.8)
	First Stage							
D _{ij}	0.19***	0.15*	0.34***	0.15***	0.20***	0.16***	0.16***	0.14***
	(0.0)	(0.1)	(0.1)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
Observations	35,072	70,764	35,072	35,072	35,072	35,072	35,072	68,901
BW (in days)	15.3	13.0	7.5	11.9	13.3	19.9	20.5	17.8

Empirical Strategy

Stressed Firms and Moratoria: Real Outcomes

Moratoria and Real Outcomes: RD Plots

Moratoria and Real Outcomes: RD Plots

- · Better economic performance for stressed firms after receiving moratoria
 - higher employment growth increase by 1.8 percentage points (pp.)
 - investment rate increase by 0.05 pp.
 - operating revenues growth increase by 3.8 pp.

Moratoria and Real Outcomes: RD Estimates

- Firms financial performance improve in other dimensions: assets, profits, equity.
- Firms are accumulating debt, consistent with results on new credits.

	Δ Emp.	Inv.rate	Δ Op. Rev.	Δ Assets	∆ Liab.	∆Profit	∆Equity	
Fuzzy-RD	1.83***	0.05**	3.87***	1.70**	1.95***	2.54***	0.85*	
	(0.7)	(0.0)	(0.8)	(0.8)	(0.7)	(0.8)	(0.5)	
First Stage								
D _{ij}	0.21***	0.22***	0.35***	0.16***	0.19***	0.19***	0.15***	
	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.1)	(0.0)	
Observations	15,379	11,386	31,786	30,887	30,660	29,762	30,887	
BW (in days)	28.9	9.7	7.0	12.8	9.0	9.4	14.8	

Testing RD design validity

· Our identification strategy relies on continuity assumption around the cutoff

Credit conditions

- Empirical evidence supports the validity of the RD design.
 - (1) No abrupt changes in density around the cutoff (DETAILS)
 - (2) Balance across eligible/non-eligible groups (Real Outcomes)
 - (3) Robustness of RD estimates
 - Placebo cutoffs: DETAILS
 - Excluding variation close to cutoff DETAILS

Empirical Strategy

Non-Stressed Firms and Moratoria

Difference-in-Difference Specification

- Non-Stressed firms \implies past due days_{ij} = 0
- Use **TWFE** (Roth et al. 2022)

- Acknowledge that the causal link is not as clean as the RDD.
- It is confounded by selection
- We aim to bring theory (and later on the model) closer to the data.

Moratoria and Loans Conditions: DID Estimates

- Tighter loan conditions for non-stressed firms.
 - loan amount reduce 0.15%
 - interest rate increase by 0.5 bp.

Moratoria and Real Outcomes: DID Estimates

• No significant effect on real outcomes for non-stressed firms.

CONCLUSIONS

Conclusions

- This paper study implications of temporary payment debt suspension for firms.
- Empirical strategy We combine RD and DID strategies
 - Debt moratorium has different effects depending if firm is stressed or not
 - For stressed firms moratoria seems to improve future credit conditions and economic and financial performance.
 - Non-stressed firms are less vulnerable to liquidity shocks, so moratoria not relevant.
- Quantative model Introduce non-contingent moratorium loans on default model.
 - Moratoria mitigates the negative response of the economy to liquidity shock.
 - Larger welfare gains if policy stipulate debt forgiveness or moratoria with interest rate not accruing.

THANK YOU!!!

APPENDIX

· Effectiveness of debt forbearance measures

- Mian, Rao and Sufi (2013), Mian and Sufi (2011), and Ganong and Noel (2020) (consumer debt), Dinerstein, Yannelis and Chen (2024) (student loan moratoria).
- \cdot Quantitative models with long-term debt and default
 - Hatchondo et al. (2022) (contingent convertible bonds and sovereign default), Önder et al. (2024) (consumer debt moratoria)

Testing Manipulation **Deck**

• Reject manipulation of the running variable (p-value=0.8195)

Treated and non-Treated Mortgages (back

Pre-treatment distribution of loans (back)

Repayment and delinquency days: Existent Loans

	During qu	arter of treat	ment	After quarter of treatment			
	Delinquency days	∆Payment due	ΔLoan	Delinquency days	∆Payment due	ΔLoan	
Sharp-RD	-107.77*** -0.90*** 0.0		0.076**	-174.19***	0.52***	-0.056*	
	(8.7)	(0.10)	(0.037)	(0.09)	(16.9)	(0.034)	
Observations	34,369	30,997	20,809	53,771	54,511	38,691	
BW (in days)	47.7	34.7	25.6	40.0	10.9	27.0	

Testing Manipulation **Deck**

• Reject manipulation of the running variable (p-value=0.8195)

Pre-Existing Differences: Existent Loans (back)

Pre-Existing Differences: Real Outcomes (back)

QUANTITATIVE MODEL

Quantitative Model

Model

Model outline

- Benchmark model: Eaton and Gersovitz (1981); Aguiar and Gopinath (2006), Arellano (2008), Hatcondo, Martinez, Onder and Roch (2022)
- Add liquidity shocks in the form of lenders' increased risk aversion trigger.
- Introduce production economy as in Mendoza and Yue (2012)
- Nash-bargaining between borrowers and lenders after default
- Households own firms and borrow on behalf of them.
- Each period, the household
 - 1. observes aggregate income and liquidity shock,
 - 2. chooses whether to default,
 - 3. borrows using non-contingent bonds and contingent debt

Non-contingent Moratoria Loans

- Perpetuities with geometrical decreasing coupons.
 - Automatic payment suspension with adverse "liquidity" shock.
 - Payment suspension at t + 1, unpaid coupon is paid (with interest) after liquidity shock.

Quantitative Model

Model Results

- Resort to administrative data whenever possible.
- Three 1.25-year p_H episodes every 20 years, o.w. $p_L = 0$
- Spread is on average 300 basis points higher with p_H
- \cdot With negative correlation between shocks to global risk premia and TFP

Long-run Simulation results

	Data	Benchmark	Moratoria
Mean standard loan/income (%)	15.7	15.5	4.0
Mean moratorium loan/income (%)	n.a.	n.a.	14.2
Mean r _s (%)	5.7	5.7	6.5
Mean moratorium r _s (%)	n.a.	n.a.	7.6
Share of NPL	3.5	3.7	3.9
Recovery rate (%)	33	31.2	29.2
Duration	5.0	5.0	4.8
Duration moratorium	n.a.	n.a.	5.2
$\sigma_{r_{ m s}}$	2.2	2.4	2.8
σ_{r_s} moratorium	n.a.	n.a.	2.9
Labor decline during defaults (%)	18.1	14.4	14.3
Labor decline during high-risk-premium (%)	3.6	2.8	3.2
Probability high-risk-premium starts (%)	15.0	15.0	15.0
Lower income during high-risk-premium (%)	4.0	4	4.5
Δ $r_{\rm s}$ with high-risk-premium shock	3	3	3.8
Fraction of defaults triggered by liquidity (%)	n.a.	10.1	0.8
$\sigma(c)/\sigma(y)$	0.87	0.95	0.93
$\rho(c, y)$	0.92	0.99	0.99

IRFs with Moratoria Loans: Liquidity Shock

Ways to improve the contract design: Welfare gains

Optimal moratorium debt relief

Debt-forgiveness with moratoria loans

-

	Bmark	$r_m = r$	$r_m = 0.0$	$r_m = -0.35$	$r_{m} = -1$
Mean standard loan/income (%)	15.5	4.0	3.9	3.1	5.1
Mean morator. loan/income (%)	n.a.	14.2	15.7	20.7	19.8
Mean r _s (%)	5.7	6.5	6.4	4.9	3.9
Mean moratorium r _s (%)	n.a.	7.6	8.3	12.9	19.0
Share of NPL	3.7	3.9	3.9	3.3	2.9
Recovery rate (%)	31.2	29.2	29.5	34.1	36.9
$\sigma(c)/\sigma(y)$	0.99	0.97	0.92	0.93	0.93
$\sigma(r_{\rm S})$	2.4	2.8	1.22	1.16	1.13
Δ $r_{ m s}$ with shock	3.0	3.8	3.6	1.9	1.0
Δ $r_{ m s}$ moratorium with shock	n.a.	3.7	3.6	2.7	2.0

IRFs with Moratoria and optimal haircut.

